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0.1 The Nearest Neighbor problem

Perhaps the most central problem in similarity search is the nearest neighbor (NN) problem. Let D(x,y)
be the distance between x and y.

Nearest Neighbor (NN) Given S⊆ X and q ∈ X . Return x ∈ S, such that D(q,x) is minimized.

As we will discuss in the lecture, this problem is difficult(impossible) to solve exactly in polynomial time
and space. To approach it we relax the problem in two ways: First, we will accept an answer x′ if it is
a c-approximate nearest neighbor. That is, we will require only that D(q,x′) ≤ cD(q,x), where x ∈ S is
the actual nearest neighbor. Since we are searching for similar, but not necessarily equal things, the most
similar and the almost most similar will often be equally useful.
We can also consider cases where the similar thing is much closer (more than a factor c) to the query
than the rest of the dataset. In such settings the returned c-approximate nearest neighbor is also the actual
nearest neighbor.
Secondly we will allow the distance, r, to be a parameter to the problem. We say that x′ is r-near if
D(q,x′)≤ r. The relaxed approximate near neighbor problem (ANN) is then stated as:

Definition 1 ((c,r)-Approximate Near Neighbor). For c > 1, r > 0. If there exists a point x ∈ S such that
D(x,q)≤ r, report some point x′ ∈ S where D(x′,q)≤ cr, otherwise report nothing.

These relaxations were first introduced by Indyk and Motwani in [8]. They also show that we can use
(c,r)-approximate near neighbor to find the c-approximate nearest neighbor by searching over settings
of r. In many applications achieving a fixed similarity might also suffice on its own, regardless of the
existence of closer points.

0.2 Locality Sensitive Hashing

Locality Sensitive Hashing(LSH) is the current state of the art for solving the ANN problem(Definition 1).
The technique was first introduced by Indyk, Gionis and Motwani [8, 6] with an implementation that is
still the best know for Hamming space. Since then it has been a subject of intense research. See [1] for
an overview. The basic idea is to partition the input data using a hash function, H, that is sensitive to the
metric space location of the input. This means that the collision probability is larger for inputs close to
each other than for inputs that are far apart. This requirement is normally formalized as:

Pr [H(u) = H(v)]

{
≥ P1 when D(u,v)≤ r

≤ P2 when D(u,v)≥ cr
(1)
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Figure 1: A non-perfect partitioning of points in R2
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Figure 2: Ideal vs. achievable LSH function.

where P1 > P2. So the points in S close to q are more likely to hash to the same location as q under
H than other points. The key to success for this method is in achieving a large gap between P1 and P2,
quantified as ρ = lnP1

lnP2
(See Figure 2). Ideally, P2 would be 0, for example by the hash function returning

the cell of the voronoi diagram associated with a point. But that would trap the function in the curse of
dimensionality, either taking up too much space or time. So instead we use several functions that each
return imperfect partitioning, as illustrated in Figure 1, but are fast to evaluate.
Using a hash function with these properties the (c,r)-ANN problem can be solved using n1+ρ+o(1) extra
space with dnρ+o(1) query time [7]. The techniques in [8, 6] extend to `1 with ρ = 1/c, for `2 a result
with ρ = 1/c2 can be found in [2]. Recently lower bounds have been published on ρ for the `1 [7] and
`2 [9] norm showing these upper bounds to be essentially tight1.

0.3 Distance functions and similarity measures

We will be formalizing “similarity” through the inverse notion of distance. Given a point in space,
similar things will be close to each other, differing things far away. But we will also sometimes use

1In the setting where we cannot look at the data before choosing our hash function.
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direct similarity measures. Table 1 some common distance functions and similarity measures we will be
using throughout.
The distance functions are central in geometry, dating back to the ancient Greeks. Most commonly used
are the `p norms, in particular the Euclidean distance `2. For a thorough discussion of the `p norms we
refer to [11].
The similarity measures originated in biology where they where developed to compare subsets of a
bounded set, like [d] or the set of all flowers. The most common is Jaccard similarity and variations of
it like the Braun-Blanquet variation. These measures range between 0 and 1, with 0 being no common
elements and 1 being duplicate sets.
The odd space out is the Hamming space. We could define the Hamming similarity as (d−H(x,y))/d,
but it is standard in the literature to use Hamming distance.

0.4 Minwise Hashing

Let Sn be the set of all permutations of [n]. We say that a family of permutations F ⊆ Sn is min-wise
independent if for any X ⊆ [n] and any x ∈ X , when π is chosen at random from F we have

Pr[min(π(X)) = π(x)] =
1
|X |

.

That is, every element of X is equally likely to permute to the smallest value. We call H a familiy of
MINHASH functions if for a random h ∈H , h(X) = min(π(X)) where π is a random permutation from
a min-wise independent family of permutations.
MINHASH functions are very useful in Set Similarity because

Pr[h(x) = h(y)] =
|x∩ y|
|x∪ y|

= J(x,y) .

Let Xi = 1 if hi(x) = hi(y) and 0 otherwise. A Chernoff bound tells us that if X = 1
t ∑

t
i Xi,

Pr[|X− J(x,y)| ≥
√

3ln t
t

J(x,y)]≤ 2e−J(x,y) ln t =
2

tJ(x,y)
. (2)

Name Input Distance function

Hamming distance x,y ∈ Xd H(x,y) = ∑
d
i

{
1 if xi = yi

0 else

Minkowski distance x,y ∈ Xd `p(x,y) =
(
∑

d
i |xi− yi|p

)1/p

Euclidian distance x,y ∈ Xd `2(x,y) =
√

∑
d
i |xi− yi|2

Jaccard similarity A,B⊆ X J(A,B) = |A∩B|
|A∪B|

Braun-Blanquet similarity A,B⊆ X BB(A,B) = A∩B
max(|A|,|B|)

Table 1: Distance functions and Similarity measures
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So we can get precise estimates of the Jaccard similarity from a small number of hash functions.
Of course the number of permutations of [n] is n! so in practice we allow F ⊆ Sn to be ε−min-wise
independent:

Pr[min(π(X)) = π(x)] ∈ 1± ε

|X |
In practice we also want hash functions that are fast to evaluate and easy to implement. Zobrist hash-
ing, or simple tabulation hashing, fits this description. It is ε−min-wise independent with ε shrinking
polynomially in |X | [10], 3−independent and fast in practice [12]. Tabulation hashing works by splitting
keys x = (x0, · · · ,xc−1) into c parts. Each part is treated individually by mapping it to [M], say with a
table of random keysto, · · · , tv−1 : U → [M]. Finally h : U c→ [M] is computed by:

h(x) =⊕i∈[c]ti(xi)

Where ⊕ denotes the bit-wise XOR operation.
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