
Distance Sensitive Bloom Filters Without False Negatives∗

Mayank Goswami1, Rasmus Pagh2, Francesco Silvestri2, and Johan Sivertsen2

1Max-Planck Institute for Informatics, Germany, gmayank@mpi-inf.mpg.de
2IT University of Copenhagen, Denmark, {pagh,fras,jovt}@itu.dk

July 18, 2016

Abstract

A Bloom filter is a widely used data-structure for representing a set S and answering queries
of the form “Is x in S?”. By allowing some false positive answers (saying ‘yes’ when the answer
is in fact ‘no’) Bloom filters use space significantly below what is required for storing S. In the
distance sensitive setting we work with a set S of (Hamming) vectors and seek a data structure
that offers of similar trade-off, but answers queries of the form “Is x close to an element of S?” (in
Hamming distance). Previous work on distance sensitive Bloom filters have accepted false positive
and false negative answers. Absence of false negatives is of critical importance in many applications
of Bloom filters, so it is natural to ask if this can be achieved also in the distance sensitive setting.
Our main contribution is upper and lower bounds (that are tight in several cases) for space usage
in the distance sensitive setting where false negatives are not allowed.

∗The research leading to these results has received funding from the European Research Council under the EU 7th
Framework Programme, ERC grant agreement no. 614331.

1 Introduction

The Bloom filter [4] is a well-known data structure for answering approximate membership queries
on a set S, i.e., queries of the form “Is x in S?”. Bloom filters are widely used in practice because they
require less space than a dictionary data structure for storing S. This is achieved by allowing a certain
probability of false positives, i.e., ‘yes’ answers for queries x 6∈S. It is critical for many applications
of Bloom filters that errors are one-sided, i.e., ‘no’ answers are always correct. In other words, false
negatives do not occur.

Generally the set S that we want to ask questions about is a subset from some much larger domain.
In applications of Bloom filters the answer to a membership query should most often be negative, and
for the vast majority of such queries the Bloom filter will give the correct answer. Whenever the filter
does give a positive answer, correctness can often be checked using a slower, less space-efficient method
(maybe even on a different machine). Bloom filters are often used as part of an exact two-level data
structure where the first level is cheap to use and does most of the work, and the second level is more ex-
pensive but only rarely needed. Having false negatives means this setup fails, and the user would have to
either accept some possibility of getting a wrong answer or perform an expensive exact query every time.

In this paper we present upper and lower bounds on the space complexity of data structures for
answering distance sensitive approximate membership queries. These answer queries of the form “Is s
close to some element S?” Specifically we address this question in the d-dimensional Hamming space
where x∈{0,1}d, S⊂{0,1}d and “close” means within Hamming distance r. In contrast to previous
work on this problem, the data structures presented in this paper introduce no false negatives.

For some settings the problem changes a lot depending on an approximation factor c≥1 defined
such that we only require a small false positive rate for points at distance cr or more from the query
point,i.e, for points at distances between r and cr no guarantee is given. This kind of approximation
of distances is standard in data structures for high-dimensional search.

Motivation. There are many potential applications for this kind of data structure. As a concrete
example consider a journal comprising a large collection of academic papers. When accepting a new
paper the journal might want to check if the new paper is very similar to any prior work already
published. By using a distance-sensitive Bloom filter this can be done in a space-efficient manner.
Because we do not allow false negatives any new paper passing this test (with a ’no’ result) is guaranteed
to be significantly different from all prior work. The test could be carried out as part of the submission
process using a web system. In the rare case that a paper fails the test the submission process could
be halted pending a consultation of the full archive.

Furthermore, since the filter provides very little information about the content of the papers it
would not need to be subjected to the same access control as a full database of all the journals papers
might be under. More interesting examples of applications for distance-sensitive Bloom filters can
be found in [12] and for Bloom filters in general in [5].

Our results. We study the space required for answering distance-sensitive approximate membership
queries with no false negatives, i.e., one-sided error probability ε. It turns out that, in contrast to
approximate membership, we get different bounds depending on how the false positive rate is defined:

• If we desire a point-wise error bound (Definition 1, 2) for each query at distance ≥cr from S, the

space usage must be Ω
(
n
(
r2

d +log 1
ε

))
for almost all instances, and Ω

(
n
(
r
c+ c

c−1 log 1
ε

))
bits if

n is small.

• If it suffices to have an ε average false positive rate over all queries at distance ≥cr from S, the

space usage must be Ω
(
n
(
r2

d +log 1
ε

))
bits.

1

We match these lower bounds with almost tight upper bounds on space usage. We introduce the
notion of vector signature, which can be seen as a succinct version of a CountSketch [6], and then
show how to use them to design filters with point-wise and average errors.

Our focus is on space usage rather than query time, and indeed it would be surprising if poly-
logarithmic query time in n would be possible since our (point-wise) data structure could be used,
say with ε=1/n, to solve the c-approximate nearest neighbor problem, and the currently best data
structures for this problem use nΩ(1/c) time [2].

Related work. There is little prior work specifically on distance-sensitive approximate membership.
The problem corresponds to querying a standard Bloom filter in a ball around the query point, but
this solution is slow, time Ω(

(
d
r

)
), and also not particularly space efficient since we would need to use a

Bloom filter with a very small false positive rate to bound the probability that none of the queries yield
a false positive. More precisely, the required space usage for this approach would be Ω(nrlog dr) bits.

Mitzenmacher and Kirsch [12] considered data structures that look like Bloom filters but replace
standard hash functions with locality sensitive hash (LSH) functions [11] to achieve distance sensitivity.
However, this approach introduces false negatives because LSH is not guaranteed to produce collisions.
In order to reduce the number of false negatives the conjunction used when querying Bloom filters
is replaced by a threshold function: There should just be “many” hash collisions. Unfortunately, the
achieved approximation factor is large, c=O(logn). Hua et al. [10] extended the data structure of [12]
with practical improvements and provided extensive experiments, confirming that false negatives also
appear in practice.

There has been some recent progress on developing LSH families that can answer near neighbor
queries without false negatives [15], but it seems inherent to such families that the storage cost grows
exponentially with r. Thus this approach is not promising perhaps except for very small values of r.

Finally, we note that it is known that allowing a constant fraction of false negatives does not signif-
icantly affect the space usage that can be achieved by approximate membership data structures [16].

2 Problem definition and notation

The Hamming distance D(p,q) between two points p,q∈{0,1}d is the number of positions where p and
q differ. Given a set S⊆{0,1}d and a point q∈{0,1}d, we overload the meaning of D(·) by defining
D(q,S) to be the minimum distance between q and any point in S, i.e. D(q,S)=minp∈SD(q,p). We let
Bd(q,r) be the Hamming ball of radius r centred around q, that is Bd(q,r)={p∈{0,1}d,D(p,q)≤r}.

In this paper we study distance-sensitive approximate membership filters defined as follows:

Definition 1 (Point-wise error). Let r≥0, c≥1, and ε∈ [0,1). Given a set S⊂{0,1}d define the two
sets Qnear={x∈{0,1}d :D(x,S)≤r} and Qfar={x∈{0,1}d :D(x,S)≥cr}. A (r,c,ε)-distance-sensitive
approximate membership filter for set S is a data-structure that reports:

• Yes for all points in Qnear;

• No with probability at least 1−ε for every point in Qfar.

The filter has a strong per point guarantee, it requires a false positive probability at most ε for the
worst case point from Qfar. Sometimes only a weaker guarantee is necessary, it might be acceptable
that some points give false positives in every instance of the data structure, as long as only an ε total
fraction of points in Qfar give false positives. We call this weaker, but often good enough, filter the
average error version:

2

Definition 2 (Average error). The definition is the same as definition 1, except the filter reports:

• Yes for all points in Qnear;

• No for at least a (1−ε) fraction of the points in Qfar.

Though the difference between these two definitions seems small, their properties and analysis
differs substantially. In the rest of the paper we will give space bounds for both versions, referring
to them respectively as the point-wise error or average error setting of the problem.

3 Lower bounds

We first investigate what can be done when no errors are allowed.

Theorem 1 (The ε=0 case). Assume that ε=0; then any data structure for the average error version
of the problem must use nlog(2d/en|Bd(cr)|) bits in the worst case. If logn=o(d) and cr=o(d/logd)
then any data structure must use Ω(nd) bits. Thus up to constant factors, the optimal data structure
is no better than one that stores the exact set explicitly.

Proof. The proof is an encoding argument. Assume that a set S⊆{0,1}d of size n is to be encoded.
Assume the optimal data structure uses s bits in the worst case. The encoder inserts the given set
S into the data structure, and runs the query algorithm on each point in the universe. The data
structure says yes to at most n|Bd(cr)| many points (including S). The encoder encodes S as a subset
of these positives, thereby using at most log

(
n|Bd(cr)|

n

)
bits. The encoder then send these bits and the

at most s bits to the decoder.
The decoding procedure is fairly straightforward. The decoder runs the query on all points in the

universe on the representation of s bits. This returns the set of positives. Using the second set of bits
written by the encoder, the decoder retrieves the set S, concluding the procedure.

Since every set S can be encoded, we get that

s+log

(
n|Bd(cr)|

n

)
≥ log

(
2d

n

)
⇒s ≥ log

((
2d

n

)n
/

(
en|Bd(cr)|

n

)n)
⇒s ≥ nlog

(
2d

en|Bd(cr)
|
)

This simplifies to s≥nd−nlog(en)−nlog|Bd(cr)|. If logn=o(d), we get s=Ω(nd−nlog|Bd(cr)|).
Further, using that |Bd(cr)|=

∑cr
i=0

(
d
i

)
<dcr for cr<d/2, we get that s=Ω(nd−ncrlogd), which is

Ω(nd) when cr=o(d/logd), establishing the theorem.

3.1 Average error

Next we investigate the average error distance-sensitive membership problem with ε > 0. We let
TP (n,r,c,d) (True Positives) denote the quantity that is n times the volume of a ball of radius cr in a
d-dimensional space, i.e., TP (n,r,c,d)=n|Bd(cr)|. TP is an upper bound on the number of positives
not considered false. We fix n,r,c and d, and abbreviate TP (n,r,c,d) as TP .

Theorem 2. Assume that TP/2d<ε<1/4. Then any distance-sensitive membership data structure
for the average error version must use Ω(n(r2/d+log(1/ε))) bits in the worst case. Note that as long
as TP/2d<ε we can have c=1 in this setting.

3

Remarks:

1. The above theorem holds as long as TP <2d−2 (the union of cr balls around the input point set is
less than a quarter of the full Hamming space) and TP/2d<ε<1/4. This is the most interesting
range of parameters. As we will see later, the Ω(nr2/d) lower bound holds as long as TP <2d−1,
and it starts to deteriorate when TP approaches 2d. This makes sense; if the union of cr balls
is of size 2d−O(n/d), then storing the complement exactly in O(n) bits suffices. Also note that
at the lower limit of ε, this lower bound matches the lower bound of the ε=0 case in Theorem 1.

2. The conditions on TP are essentially a condition on |Bd(cr)| and therefore a condition on c and
r. The reason why we cannot put this in a closed form solely as a condition on c and r is because
there is no closed form for |Bd(cr)| for all values of c and r. We refer the reader to Lemma 11
in the Appendix for bounds on volumes of Hamming balls.

The rest of this section is devoted to the proof of Theorem 2.
We first prove a nlog(1/ε) lower bound. The proof is an encoding argument that extends the

scheme presented in the proof of Theorem 1. The encoder receives a set S of size n from the universe
to encode. Assume the optimal distance sensitive data structure with ε average error uses s bits in the
worst case. The encoder inserts S into the data structure, and runs the query algorithm on all points
in the universe. We first claim that the number of points the data structure answers yes to is at most
2d+1ε. First, the number of true/legitimate positives TP is less than 2dε. Also the number of false
positives is always less than 2dε. Adding these, we find that the total number of positives is at most

2d+1ε. The encoder then encodes the set S as a subset of these positives, using at most log
(

2d+1ε
n

)
bits.

He then sends these bits along with the at most s bits representing the set S to the decoder.
The decoder runs the query algorithm on the s bits, retrieves the set of positives, and uses the

bits written by the encoder to figure out the set S. We have that:

s+log

(
2d+1ε

n

)
≥ log

(
2d

n

)
⇒s ≥ nlog(1/2eε)∈Ω(nlog(1/ε))

To prove the nr2/d lower bound, we first develop some notation. Consider the usual graph on the
d-dimensional Hamming cube where two points p and q have an edge between them if they are related
by a bit flip. Given a set A⊂{0,1}d, let Ac denote its complement, and define ∂A to be the set of
points in A that have an edge to a point in Ac (when either Ac or A is empty, ∂A is defined to be the
empty set). Also, given an integer r>0, define A−r=A\∪x∈∂AB(x,r−1). A−r is the maximal subset
of A that has the property that for any x∈A−r, the ball B(x,r) is contained inside A.

A data structure that uses s bits can be viewed as a function D : [
(

2d

n

)
] → 2s; given a set

S ⊆ {0,1}d of size n, D(S) returns a memory representation using at most s bits. Let V (S) =
|∪x∈SB(x,r)|+ε(2d−|∪x∈SB(x,r)|)

Running the query algorithm on all points in the Hamming cube for the representation D(S)

returns a set A of positives (Ac of negatives) such that |A|≤V (S). Varying over all S∈ [
(

2d

n

)
], we get

a family F of sets A such that:

1. ∀S∈ [
(

2d

n

)
], ∃A∈F such that B(x,r)⊂A for all x∈S.

2. ∀S such that D(S)=A, |A|≤V (S).

The query algorithm is therefore a function from 2s to F , the image of which is all of F . This
implies that s≥ log|F|. So in order to get a lower bound on s we need a lower bound on the size of

4

the smallest family F with the above properties. Let D denote the composition of D with the query

algorithm; i.e., D : [
(

2d

n

)
]→F , where D(S) equals the set A of positives that the query algorithm

answers yes to on the representation D(S).
Fix A∈F . Define D−1(A)={S :D(S)=A}. Any ball of radius r around a point p∈S such that

S∈D−1(A) must be completely contained inside A. The maximum number of such points p is |A−r|.
Thus we get that |∪S∈D−1(A)S|≤|A−r|. This implies that |D−1(A)|≤

(|A−r|
n

)
.

Since the entire space [
(

2d

n

)
] needs to be covered, we get that |F|≥

(
2d

n

)
/
(|A−r|

n

)
. Since TP ≤2d−2,

and the number of allowed false positives is less than 2dε, which because ε<1/4 is also less than 2d−2, we
get that the total number of positives is less than 2d−1. The next lemma derives an upper bound on |A−r|

Lemma 1. Fix a 1≤V ≤2d, and let r>0.

(i) Of all sets A such that |A|≤V , the largest Hamming ball of size V maximizes |A−r|.

(ii) If 2dε≤V ≤2d−1 and A is any set of size V , then |A−r|≤2dexp(−2r2/d).

Proof. We prove (i) by induction. The case r = 1 is just the edge isoperimetric inequality, which
states that of all sets of a given size, Hamming balls have the smallest vertex boundary. Assume the
statement is true for r=k, and fails at r=k+1 for some set A, i.e., |A−(k+1)|> |H(V)−(k+1)|, were
H(V) is a Hamming ball of volume V . However, the isoperimetric inequality can also be stated as: if
a set A (that is not a ball) has size greater then or equal to that of the Hamming ball of radius R, then
|A∪Γ(A)| is larger than the volume of Hamming ball of radius R+1, where Γ(A) is the set of neighbors
of A. Thus we get that |A−(k+1)|∪Γ(A−(k+1))|> |H(V)−k|, implying that |A−k|> |H(V)−k|, which
contradicts the induction hypothesis.

The proof of (ii) follows from (i) and the additive Chernoff bound for binomial random vari-
ables. If Xi denotes the outcome of the ith coin toss with an unbiased coin, and X=

∑d
i=1Xi, then

P (X≤µ−a)≤exp(−2a2/d), for all 0<a<µ, where µ=E[X]=d/2.
To prove (ii), let r(V) be the radius of a Hamming ball of volume V . First note that |A−r| is at most

the size of the Hamming ball of radius r(V)−r by (i) above. Let X∼Bin(d,0.5). Now we have that

|A−r|≤2dP [X≤r(V)−r]
=2dP [X≤d/2−(r+(d/2−r(V)))]

≤2dexp

(
−2

(r+(d/2−r(V)))2

d

)
≤2dexp

(
−2r2/d

)

We now use the lemma to derive the lower bound. We get

|F|≥
(

2d

n

)
/

(
|A−r|
n

)
≥
(
e2d/|A−r|

)n
≥
(
exp
(
2r2/d

)
+1
)n
,

which implies that s≥ logF=Ω
(
nr2/d

)
Combining our bounds, we get that when n,r and c satisfy the

condition that TP ≤2d−2, any data structure must use Ω(n(r2/d+log(1/ε))) bits in the worst case.

3.2 Point-wise error

The lower bound for the average case as stated in Theorem 2 also applies to a filter with point-wise
error guarantees. A (r,c,ε)-filter with point-wise error is also a (r,c,ε)-filter with average error ε.
However, a stronger lower bound holds if the number of points n is not too large.

5

Theorem 3. Consider an (r,c,ε)-distance sensitive approximate membership filter with point-wise
error guarantees, F , on a set of n points in {0,1}d. Define TP (n,r,c,d)=n|Bd(cr)| as before. Then
the filter must use:

• (Almost all n) Ω
(
n
(
r2/d+log(1/ε)

))
bits if TP (n,r,c,d)/2d<ε<1/4.

• (Small n) Ω(n(r/δc+log(1/ε))) bits if nexp(−δcrD(1
δ ||0.5))<ε<1/4, where D(p||0.5) is the

Kullback-Leibler divergence function (see Appendix Lemma 11).

Proof. We claim that the H=Ω
(
n
(
r2/d+log(1/ε)

))
lower bound in Theorem 2 for the average error

case applies to F as well. Suppose that F requires H ′ bits with H ′<H. Let Qfar be the set of points
at distance at least cr from all points in S. Since the point-wise filter says no to a point in Qfar with
probability at least 1−ε, the expected number of points in Qfar with a correct answer is (1−ε)|Qfar|.
There must exist random values for which the filter provides the correct solution for at least (1−ε)|Qfar|
points: by using these values, we obtain a deterministic average error filter with space complexity
H ′<H, which is a contradiction. Therefore the lower bound H holds for point-wise filters as well.

We now observe that the lower bound H can be further improved. Indeed, the lower bound H is
decreasing in d and a higher value is reach when d=Θ(rc). However, a filter for d-dimensional points
with point-wise guarantees is also a filter for d′-dimensional points with the same guarantees for any
d>d′. The claimed result then follows, as long as the conditions of Theorem 2 are met. This is where
we require n to be small; let d= δrc, then the condition states that n|Bδcr(cr)/|2δcr<ε< 1/4. BY
using the Hoeffding-Chernoff bound for the volume of a Hamming ball (see Appendix Lemma 11),
this simplifies to nexp(−δcrD(δ−1||0.5))<ε<1/4.

We observe that this trick does not hold for the average case since the average error rate relatively
to a subspace (e.g., {0,1}d′) can be much larger than the one in the complete space (i.e., {0,1}d).

As we will see later this lower bound is asymptotically tight if c≥2. In the upper bound we show
there is a 1/(c−1) overhead if 1<c< 2 and ε is sufficiently small. The next proof shows that this
overhead is unavoidable when 1<c<2. To help in assessing the hypothesis, we notice that, when

c= 1 +
√
r, the theorem holds for n≤ 2Θ(r), ε≤ 2−Θ(r), d= 2Ω(

√
r) and it gives a Ω

(
r3/2

)
bound,

whereas the previous theorem only gave Ω(r). We note that the next theorem can be integrated with
the previous Theorem 3 to get an additive r/c or r2/d more (according to the parameters).

Theorem 4. Let c≤ 2, ε≤ (c−1)/n and d(c−1)≥ ((c−1)/ε)6/(r(c−1)) +(r(c−1))3. Consider an
(r,c,ε)-distance sensitive approximate membership filter with point-wise error guarantees, F , on a set

of n points in {0,1}d. Then, F requires Ω
(

n
c−1 log(1/ε)

)
bits.

Proof. The main idea of the proof is to use filterF in a one-way randomized protocol between two players
(Alice and Bob) to send an arbitrary element x of a given set S from Alice to Bob: it is known (indexing
problem) [13] that such a protocol requires Ω(log|S|) bits if the protocol succeeds with probability at
least 2/3 and the two players share random bits. We introduce two families of error correcting codes,
C andM, that are explained below and we assume, without loss of generality, that are both known to
Alice and Bob (the code families can be constructed with a simple deterministic brute-force algorithm).

Let k=1/(c−1). The error correcting binary code C has m=1/(nεk) code words, each one with
length dC=d/k bits, weight w=r/k and minimum Hamming distance between two code words δ=r/k.
Such an error correcting code exists for [9, Theorem 6], which shows that there exists a constant-weight
code of size at least

d
w−δ/2+1
C
δ!

≥ (d(c−1))r(c−1)/2

(r(c−1))r(c−1)
≥(d(c−1))r(c−1)/6≥ c−1

ε

6

where, in the second from the end and in the last steps, we exploit the fact that d(c−1)≥(r(c−1))3

and d(c−1)≥((c−1)/ε)6/(r(c−1)), respectively.
The error correcting binary codeM has n codewords and minimum Hamming distance rc (there

is no requirement on codewords weights); we letM={m1,...,mn}. By the Gilbert-Varshamov bound
such a codeM exists with length dM=rc+logn.

Alice arbitrary selects n codes xi=(xi,1,...,xi,k−1) from the set Ck. Then, she encodes each xi into
x̂i =xi,1 · ... ·xi,k ·z0 ·mi, where · denotes the concatenation of binary sequences, z0 is a sequence of
r/k=r(c−1) zeros, and mi∈M. The length of each x̂i is dx=kdC+dM+r/k=d+logn+r(2c−1).
Finally, Alice inserts x̂0,...,x̂n−1 into the filter F and sends F to Bob using SF (n,dX ,c,r) bits.

We now show that Bob can reconstruct each codeword xi by querying filter F at most 1/ε times.
Codeword xi,1 is obtained by performing a query with q=q′ ·z2 ·z3 ·mi for every possible codeword q′∈C,
where z2 is a sequence of (k−1)δ=(k−1)r(c−1) zeros, z3 is a sequence of r/k ones, and mi∈M. The
distance between q′ and any x̂j in F is D(x̂j ,q)=D(xj,1,q

′)+D(xj,2 ·...·xi,k,z2)+D(z0,z3)+D(mj ,mi).
It holds that:

1. D(xi,1,q
′)≥r(c−1) if q 6=xi,1 and 0 otherwise;

2. D(xj,2 ·...xi,k,z1)=(k−1)r(c−1)=r−r(c−1) since each codeword in C has weight r(c−1);

3. D(z0,z3)=r(c−1);

4. D(mj ,mi)≥rc if mj 6=mi and 0 otherwise.

Therefore, D(x̂j ,q)=r if xi,1 =q′ and mi=mj , and D(x̂j ,q)≥rc otherwise. A similar procedure holds
for computing xi,j for each i and j.

Bob performs mk queries per xi and nkm=1/ε queries in total. The expected number of wrong
queries is then 1 and, if the protocol is repeated independently, there is a constant probability that all
queries succeed. Since Bob is able to reconstruct an entry from the set S=Cnk, by the aforementioned
result in [13], we have

SF (n,dx,c,r,ε)≥Ω(logS)⇒SF (n,dx,c,r,ε)≥Ω
(

log|C|nk
)
≥ n

c−1
log(1/ε).

4 Upper bounds

4.1 The vector signature method

In this section we present a filter data structure with point-wise error and prove its correctness. We
will later show how a filter with average error follows as a special case.

Our filter data structure can be seen as a succinct version of a CountSketch [6]. It is easy to
see that the CountSketch of a vector, x, will never have `1 norm larger than ‖x‖1. By linearity
we can use the difference between the CountSketches of two vectors to derive upper bounds on the
`1 distance between them. The number of entries (and hence the space usage) in each CountSketch
can be used to control the approximation error.

It turns out that we can throw away much of the information in a standard CountSketch without
sacrificing asymptotic error bounds. Specifically we introduce the notion of a vector signature as a
function mapping a vector from {0,1}d into O(r/(c−1)+(c/(c−1))log(1/ε)) bits.

The key feature of the vector signature is that a suitable function of the signatures of two vectors
x and y is smaller than or equal to a certain threshold Ψ if D(x,y)≤r, while it is larger than Ψ with
probability 1−ε if D(x,y)≥cr as formalized in theorem 5.

7

Signature construction The construction of the signature uses four parameters m,cmod,cdiv and
δ that all depend on r, c and ε. Their values will be provided in the two following proofs.

LetM be anm×d random matrix. For any i∈{1,...,m},j∈{1,...,d},Mi,j denotes the element in the
ith row and jth column of M , and mi denotes the ith row. For m=O

(
r/(c−1)+(c/(c−1))2log(1/ε)

)
.

Every entry of M is initially set to 0. For each column, j′, δ = O (d(c/r)log(1/ε)e) updates are
performed as follows:

(1) Select a value, s, i.d.d. from {−1,1}. (2) Select a row, i′, uniformly at random from {1,...,m}.(3)
Update the entry at Mi′,j′ by adding s.

We let ui denote the number of updates performed on all entries of row mi; it holds that ‖mi‖1≤ui
since two updates can affect the same entry and erase each other.

Let cdiv,cmod be suitable values with asymptotic value O(c). The signature of a vector x∈{0,1}d
is then the m-dimensional vector σ(x) defined by

σ(x)i=

⌊
(Mx)i mod∗ cmod

cdiv

⌋
For notational simplicity, we define the mod∗ operator that is similar to the standard modulo operator
but maps into a range symmetric around zero, i.e,

α mod∗ cmod =((α+dcmod/2e) modcmod)−dcmod/2e

where mod denotes the standard modulo operation into [0,cmod). We refer to Γ(x,y), defined by
Γ(x,y)i=cdiv(σ(x)i−σ(y)i) mod∗ cmod, as the gap vector between signatures of vectors x and y, and
to γ(x,y)=‖Γ(x,y)‖1 as their gap.

The following theorem describes the main property of signature vectors.

Theorem 5. There exists a value Ψ=O(δr), such that for each pair of vectors x,y∈{0,1}d:

• if D(x,y)≤r then γ(x,y)≤Ψ, and

• if D(x,y)>cr then γ(x,y)≥Ψ with probability at least 1−ε.

We give two different proofs of Theorem 5 depending on the value of the approximation factor
c. First for c=O(1) we obtain the claimed result when m=O

(
r/(c−1)+(1/(c−1))2log(1/ε)

)
. Then

we prove the theorem for larger approximation factors with m=O(r/c+log(1/ε)).
For two given vectors x and y, we will assume for notational convenience that they differ on the

first D(x,y) positions. We let x′ and y′ denote the prefix of length D(x,y) of x and y (i.e., the positions
where they differ), M ′ denote the first D(x,y) columns of M , m′i the ith row of M ′, and u′i the number
of updates affecting m′i.

Proof of Theorem 5 with c=O(1). For the case c=O(1), we set m=24 c2

c−1max
{
r; 2
c−1 log(1/ε)

}
,

cdiv =1, cmod =2 and, δ=1. With these values, the signature becomes σ(x)i=(Mx)i mod∗ 2, where
each column of M is a random vector with exactly one entry in {−1,1} and the remaining m−1 entries
set to zero. Further, the threshold is Ψ=r and the gap vector is defined by

Γ(x,y)i=M(x−y)i mod∗ 2=M ′(x′−y′)i mod∗ 2.

The second equality is true because cdiv =1 so there is no rounding and σ is a linear function of x and
y. We observe that the bit positions where x and y are equal do not affect the gap vector.

When D(x,y)≤r, M ′ contains at most r entries in {−1,1} and hence γ(x,y)=‖M ′(x′−y′)‖1≤r,
proving the first part of Theorem 5.

Consider now the case D(x,y)≥cr. The second part of Theorem 5 follows by the following two
claims:

8

Claim 1: With probability 1−ε, there are more than r rows of M ′ affected by an odd number of
updates; we refer to these rows as odd rows.

Claim 2: If m′i is an odd row, then |Γ(x,y)i|=1.

Lemma 2 and 3 below show that the claims hold. We then have that γ(x,y)=
∑m

i=1|Γi(x,y)|>r=Ψ
and Theorem 5 follows.

Lemma 2 (Claim 1). Let x,y be two input vectors in {0,1}d, and let M ′ be the sub-matrix of M
associated to the positions where x and y differ. Then, if x and y have distance at least cr we have
that with probability 1−ε, there are more than r odd rows in M ′.

Proof. Consider the D(x,y) updates used in the construction of M ′. If after the first D(x,y)−cr
updates there are at least (c+1)r rows with an odd number of updates, then the theorem follows:
The remaining cr updates can decrease the number of odd rows by at most cr.

Suppose now that there are Yo<(c+1)r odd rows after the first D(x,y)−cr updates, and consider
the last cr updates. Let Yj , with j∈{1,...cr} be a random variable set to 1 if the jth update affects
an odd row, which then becomes an even row; Yi is set to 0 otherwise. The probability that Yj = 1
is p= (Yo+j−1)/m≤ 3cr/m since there can be at most Yo+j−1 odd rows before the jth update:
the initial Yo odd rows and the rows affected by the previous j−1 updates. Let Y =

∑cr
j=1Yj . The

expected value of Y is µ=pcr≤3(cr)2/m. Let η=(c−1)r/(2µ)−1 (note that η≥0). By a Chernoff
bound, the probability that Y ≥(c−1)r is Pr[Y ≥(c−1)r/2]=Pr[Y ≥µ(1+η)]≤e−η2µ/2. So we have:

Pr[Y ≥(c−1)r/2]≤e
−
(

(c−1
c)

2 m
6

+
3(cr)2

2m
−(c−1)r

)
≤e−

(
(c−1

c)
2 m

6
−(c−1)r

)
≤ε

where the last step follows since m=24 c2

c−1 max
{
r; 2
c−1 log(1/ε)

}
. Therefore, with probability 1−ε,

at most Y ≤(c−1)r/2 updates affect odd rows, making them even. It follows that the number of odd
rows after all updates is: Y0+(cr−Y)−Y ≥cr−2Y ≥r.

Lemma 3 (Claim 2). If row m′i is odd, then |Γi(x,y)|=1.

Proof. Let h1,...,hui be the non zero entries in m′i. We have that mi(x
′−y′)=

∑ui
j=1M

′
i,hj

(x′hj−y
′
hj

).

Since (x′hj − y
′
hj

) and M ′i,j are in {−1, 1} and since ui is odd, then the sum must be odd and

|Γi(x,y)|= |m′i(x′−y′) mod∗ 2|=1.

Proof of Theorem 5 for c=Ω(1). Let β=4/(p1p2)2 where p1 and p2 are suitable constants (p1≈
0.6, p2≈0.06) that will be derived in the proof. The proof presented here holds for c≥

√
β/p2≈925. We

conjecture that a smaller approximation factor c can be obtained with a more careful analysis of the con-
stants. The parameters used in the signature construction are set as follows: m=βmax{r/c,log(2/ε)},
δ=dclog(2/ε)/re, cdiv =c/β, cmod =8c, and the threshold is Ψ=δr+max{r,clog(1/ε)}.

In contrast to the c=O(1) case, the gap vector and the gap cannot be expressed as a function
of only the positions where x and y differ (i.e., x′ and y′). In fact, due to the division by cdiv and the
floor operation, the gap vector may depend on the positions where x and y coincide. However, we
can still provide upper and lower bounds on the gap that depend only on x′ and y′. It holds that:

|m′i(x′−y′) mod∗ cdiv|−cdiv≤|Γi(x,y)|≤|m′i(x′−y′) mod∗ cmod|+cdiv. (1)

9

Suppose D(x,y)≤r, then by (1) the gap can be upper bounded as follows:

γ(x,y)=
m∑
i=1

|Γi(x,y)|≤
m∑
i=1

(
|m′i(x′−y′) mod∗ cmod|+cdiv

)
≤cdivm+

m∑
i=1

|m′i|1≤δr+max{r,clog(1/ε)}=Ψ.

The last two steps follow since entries in x′−y′ are in {−1,1} and M ′ contains at most δr updates. We
observe that it is crucial to use mod∗ instead of mod since it guarantees that |α mod∗ cmod|≤|α|.
The first part of the theorem follows.

Suppose now that D(x,y)≥cr. We say that row m′i is dense if the number of updates ui is at least
δD(x,y)/(2m). The proof that the gap is larger than Ψ with probability at least 1−ε relies on the
following claims:

Claim 1: With probability 1−ε/2, the number of dense rows is at least p1m, where p1 is a suitable
constant;

Claim 2: For each dense row, the probability that |Γi(x,y)|≥c/
√
β is a constant p2;

Claim 3: With probability 1− ε/2, there are at least p1p2m entries in the gap vector such that
|Γi(x,y)|≥c/

√
β;

Then, we have that γ(x,y)=
∑m

i=1|Γi(x,y)|≥cp1p2m/(2
√
β)≥Ψ since m=βmax{r/c,log(1/ε)} and

β=4/(p1p2)2. Thus, the second part of Theorem 5 follows.

Before proving the claims , we will need three technical lemmas. Lemma 4 gives a load bound
on a balls and bins problem by using the bounded differences method to manage dependent random
variables. Lemma 5 bounds the probability of a sum of {−1,1} random variables to be in a specified
interval after a modular operation. Finally, lemma 6 gives a lower bound on the tail distribution of
the sum of {−1,1} random variables by leveraging the Berry-Esseen theorem.

Lemma 4. Consider p balls thrown uniformly and independently at random in q bins, with p≥ q,
and let α > 0 be any arbitrary value. Then, with probability at least 1− ε, there are more than
q(1−e−α)−

√
(q/2)log(1/ε) bins with at least p/q−

√
2αp/q balls.

Proof. For every i∈{1,...,p} and j∈{1,...,q}, define the following random variable:

Xi,j =

{
1 if ball i landed in bin j

0 otherwise

Let also Xj =
∑

i∈[p]Xi,j be the number of balls in the jth bin; the expected value of Xj is µ= p/q
for each j. Since the balls are throw independently a Chernoff bound gives:

Pr
[
Xj≤µ−

√
2αµ

]
≤e−α

Consider now the random variable Yj :

Yj =

{
1 if Xj≥µ−

√
2αµ

0 otherwise

10

Let Y =
∑q

j=1Yj ; we use YY1,..,Yq to denote the actual value of Y with the specified values. Since there
is dependency among the Yj terms, we use the method of bounded differences [8] to bound the tail
distribution, instead of a Chernoff bound. The random variable Y satisfies the Lipschitz property
with constant 1, that is:

|YY1,...,Yi,...,Yq−YY1,...,Y ′i ,...,Yq |= |Yi−Y
′
i |≤1

whenever Yi 6= Y ′i for every i ∈ {1, ... , q}. By the method of bounded differences [8, Corollary

5.2], we get Pr[Y ≤E[Y]−t]≤ e−2t2/q. Then, Pr[Y >E[Y]−t]≥ 1−ε if t=
√

(q/2)log(1/ε). Being
E[Y]≥q(1−Pr

[
Xj≤µ−

√
2αµ

]
)≥q(1−e−α), the claim follows.

Lemma 5. Consider a sequence s1,...,sk of independent and evenly distributed random variables in
{1,−1}, and an arbitrary value q∈N. Let S=

∑k
i=1si and Sq=S mod∗ q. Then for all values a,b such

that 0≤a≤b<dq/2e and b−a≥q/4, we have:

Pr[|S|≥a]

2
<Pr[a≤|Sq|<b]<Pr[|S|≥a]. (2)

Proof. Let k′=d2k/qe−1, and define the following four quantities:

H1 =

bk′/2c∑
`=0

Pr[a+`q≤|S|<b+`q]

H2 =

bk′/2c∑
`=0

Pr[`q+b≤S<(`+1/2)q]+Pr[(`+1)q≤S<(`+1)q+a]

H3 =

bk′/2c∑
`=0

Pr[(`+1)q−b< |S|≤(`+1)q−a]

H4 =

bk′/2c∑
`=0

Pr[(`+1/2)q≤S<(`+1)q−b]+Pr[(`+1)q−a≤S<(`+1)q].

Standard computations show that: Pr[a≤|Sq|<b]=H1+H3 and that Pr[|S|≥a]=H1+H2+H3+H4.
We then have that Pr[a≤|Sq|<b]<Pr[|S|≥a], and the right side of the inequality in (2) follows.

We now focus on the other side of the inequality. We first prove that H1 ≥H2. The random
variable S has value i, with i∈ [−k,k] if there are (k+i)/2 terms set to +1 and (k−i)/2 terms set to
−1. Since the si terms are independent and evenly distributed, we have Pr[S= i]=

(
k

(k+i)/2

)
1
2k

(note

that the probability is decreasing in i). We then have, for any integer `≥0, that :

Pr[a+`q≤|S|<b+`q]=2

b+`q−1∑
j=a+`q

(
k

(k+j)/2

)
1

2k
.

Since (b−a)≥q/4 and Pr[S= i] is decreasing in i, it then follows that

Pr[a+`q≤|S|<b+`q]≥2

(`+1/2)q+b∑
j=`q+b

(
k

(k+j)/2

)
1

2k
+2

(`+1)q+a∑
j=(`+1)q

(
k

(k+j)/2

)
1

2k

≥Pr[`q+b≤S<(`+1/2)q]+Pr[(`+1)q≤S<(`+1)q+a].

It then follows that H1 ≥H2. Similarly, it can be shown that H3 ≥H4. Therefore, Pr[|S| ≥ a] =
H1+H2+H3+H4≤2(H1+H3)≤2Pr[a≤|Sq|<b]. The left side of the inequality in (2) follows.

11

Lemma 6. Let S =
∑k

i=1 si, where the si terms are independent and evenly distributed random
variables in {−1,+1} and let α>0 be any arbitrary value. Then,

Pr[|S|≥α
√
k]≥ 2α√

2π(α2+1)eα2/2
− 1√

k
.

Proof. We observe that E[si]=0, σ2 =E[s2
i]=1 and ρ=E[|si|3]=1. By the Berry-Esseen theorem [3],

we have that the random variable Q=S/(
√
kσ)=S/

√
k can be approximate by a standard normal

distribution N (0,1) with error

|Pr[Q≤x]−Ψ(x)|≤ Cρ

σ3
√
k
.

where Ψ(x) is the cumulative distribution function of N (0,1), C is a suitable constant smaller than
1/2 [17]. The above inequality can be rewritten as

|Pr[Q>x]−Ψc(x)|≤ 1√
k
.

with Ψc(t)=1−Ψ(x). Since Ψc(x)≥x/(
√

2π(x2+1)ex
2/2) [7, 1], we then get

Pr[|S|≥α
√
k]=2Pr[Q≥α]]≥2Ψc(α)− 1√

k
,

The lemma follows by inserting the bound for Ψc(x).

We are now ready to prove the three claims used in the proof of Theorem 5 for c=Ω(1).

Lemma 7 (Claim 1). With probability 1−ε/2, the number of dense rows in M ′ is at least p1m, where
p1≈0.6.

Proof. Matrix M ′ is obtained by performing δ random updates per column independently and uni-
formly distributed. The number of updates ui affecting row m′i is distributed as the number of balls in
a bin after randomly throwing δD(x,y) balls into m bins. By applying Lemma 4 with α=1, it follows
that, with probability at least 1−ε, there are more than m′≥(1−1/e−

√
log(2/ε)/m)m≥p1m dense

rows where ui≥(δD(x,y)/m)(1−
√
m/(δD(x,y)))≥δD(x,y)/(2m) as soon as c≥2

√
β.

Lemma 8 (Claim 2). If m′i is dense, then |Γi(x,y)|≥c
√
β with constant probability p2 ≈0.06.

Proof. The statement follows by showing that |m′i(x′−y′) mod∗ cmod|≥c/
√
β(1+1/

√
β),K: indeed,

by Equation 1, we have that |Γi(x,y)|≥|m′i(x′−y′) mod∗ cmod|−cdiv≥c/β+c/
√
β−cdiv =c/

√
β.

We observe that m′i(x
′−y′) can be rewritten as

∑ui
j=1σj(x

′−y′)f(j), where f(j) is the position
in m′i affected by the jth update. Since (x′−y′) has entries in {−1,1} and the σj ’s are independent,
m′i(x

′−y′) has the same density function of S=
∑ui

j=1σj . The probability that |Γi(x,y)|≥K, is then

Pr[|M ′i(x′−y′) mod∗ cmod|≥K]=Pr[|S mod∗ cmod|≥K]≥ Pr[|S|≥K]

2
,

where in the last step we applied Lemma 5 with a=K, b=cmod/2 and q=cmod since b−a≥cmod/4.
To lower bound Pr[|S|≥K] we apply Lemma 6 with α=1+1/

√
β since K≤√ui(1+1/

√
β). Hence,

Pr[|S|≥K]

2
≥

Pr[|S|≥(1+1/
√
β)
√
ui]

2
≥ 1+1/

√
β√

2π((1+1/
√
β)2+1)e(1+1/

√
β)2/2

− 1
√
ui
≈0.06,p2

where the last step follows since
√
ui≥c/

√
β≥1/p2.

12

Lemma 9 (Claim 3). With probability 1−ε/2, there are at least p1p2m/2 entries in the gap vector
such that |Γi(x,y)|≥c;

Proof. By the first claim there are at leastm′=p1m dense rows with probability 1−ε/2. For each dense
row, let Yi be a random variable sets to 1 if |Γi(x,y)|≥c, and 0 otherwise. By the previous lemma, we

have that Pr[Yi=1]≥p2. Let Y =
∑m′

i=1Yi. Since the Yi are independent, we get with a Chernoff bound::

Pr[Y ≥p2m
′(1−

√
log(2/ε)/(p2m′)≥p2m

′/2]≥1−ε/2

using m=βmax{r/c,log(2/ε)} and β≥2/p2.

4.2 A filter with point-wise error

A filter with point-wise error follows by just storing the n signatures of the points S, using space
O
(
n
(
r/(c−1)+(c/(c−1))2log(n/ε)

))
. We must also store enough information to recover M , but this

cost is dominated by the cost of storing the signatures. However, a better encoding allows to us remove
the logn dependency, as shown in the following theorem.

Theorem 6. There exists a (r,c,ε)-distance sensitive approximate membership filter with point-wise
error which requires O

(
n
(
r/(c−1)+(c/(c−1))2log(1/ε)

))
bits for any c > 1 on a set S of n points.

When c≥2 and |∪x∈SB(x,cr)|≤2d−2, the filter requires optimal O
(
n
(
r/c+log(1/ε)

))
bits.

Proof. Consider the n signatures of points in S constructed with error ε′ = ε/n. Each requires
O
(
r/(c−1)+(c/(c−1))2log(1/ε′)

)
=O

(
r/(c−1)+(c/(c−1))2log(n/ε)

)
bits. Group all signatures by

the value of the logn most significant bits, and store all signatures in the same group without the
common logn bits. This gives the claimed result. The probability of a false positive is nε′=ε due to
an union bound on the n signatures. Finally, the optimality of the filter follows from Theorem 3.

4.3 A filter with average error

The point-wise error filters are of course also valid average error filters, but in this setting we can also con-
struct space efficient filters with a c=1 approximation factor. Define Qr-far ={x∈{0,1}d|D(x,S)≥r}
and similarly Q(r;cr)-far ={x∈{0,1}d|r≤D(x,S)≤cr}.

Theorem 7. Let |∪x∈SB(x,cr)| ≤ 2d−1 and |∪x∈SB(x,cr)−B(x,r)| ≤ ε2d−2. Then an (r,c,ε/4)-
point-wise error filter, F , is also an (r,1,ε)-average error filter.

Proof. Let P denote the number of false positives accepted by F . Since there is no guarantee on points
in Q(r;cr)-far we get P ≤ ε

4 |Qcr-far|+|Q(r;cr)-far|. We can trivially bound |Qcr-far|≤2d. From the second

constraint we get |Q(r;cr)-far|≤ε2d−2. We see that P ≤ ε
42d+ε2d−2 =ε2d−1 By the first constrain we

also have |Qr-far|≥|Qcr-far|≥2d−1 so we see P ≤ε2d−1≤ε|Qr-far|. Hence F fulfills all the requirements
for an (r,1,ε)-average error filter.

The two constrains used in Theorem 7 allow many different settings of r,c and ε depending on S and
d. Lets consider a specific, practical setting of the parameters. By setting c=r in the point-wise filter,
we obtain an average error filter which matches the Ω(nlog(1/ε)) lower bound of Theorem 2 for small
r. Interestingly, this space bound shows that it is possible to support distance sensitive membership
queries in the average error setting with the asymptotic space bound of a Bloom filter when r≤

√
d.

Theorem 8. Let r≤
√
d, n≤ 2d/3 and ε≥ 1/2d−2. Then, there exists an optimal (r,1,ε)-distance

sensitive approximate membership filter with average error which requires O(nlog(1/ε)) bits on a set
S of n points.

13

Proof. Let us consider a (r,r,ε/4)-filter F with point-wise guarantees. The amount of false positives
accepted by F is P ≤(ε/4)|Qr2-far|+|Q(r;r2)-far|. We have |Q(r;r2)-far|≤nr2

(
d
r2

)
≤(ε/4)2d since d≥r2,

n≤2d/3 and ε≥4/2d/2. Trivially, we also have that |Qr2-far|≤2d. We see that P ≤ε2d−1

Now note that |Qr-far|≥2d−nr
(
d
r

)
≥2d−1 by d≥r2 and n≤2d/3.

We combine the two bounds to see P ≤ ε2d−1 ≤ ε|Qr-far|. The optimality of F follows from
Theorem 2 since r2/d<1 and nlog(1/ε) is a lower bound.

5 Conclusion

To the best of our knowledge, this paper is the first that presents and gives upper and lower space
bounds for the problem of distance-sensitive filters without false negatives. However, several open
questions still remain: It would be interesting to improve the analysis of signatures to get a unique
analysis of the two cases (i.e., c∈O(1) and c∈Ω(1)) with better constants. There are also settings
where the bounds are not tight. It would be interesting to close the gap in the point-wise setting
between the lower and upper bound when n is larger than the upper limit in Theorem 3, and likewise
in the average error setting when r>

√
d. The signature method provides a valuable tool for distance

sensitive membership queries without false negatives, it would be interesting to extend it further. We
have made some preliminary experimental analysis that shows that the signatures work as intended
and are easy to implement, but it would be interesting to perform more through experiments.

14

References

[1] Milton Abramowitz. Handbook of Mathematical Functions, With Formulas, Graphs, and
Mathematical Tables,. Dover Publications, Incorporated, 1974.

[2] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, pages 793–801. ACM, 2015.

[3] Andrew C. Berry. The accuracy of the gaussian approximation to the sum of independent
variates. Transactions of the American Mathematical Society, 49(1):122–136, 1941.

[4] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422–426, jul 1970.

[5] Andrei Broder and Michael Mitzenmacher. Network applications of Bloom filters: A survey.
Internet mathematics, 1(4):485–509, 2004.

[6] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3–15, 2004.

[7] John Cook. Upper and lower bounds for the normal distribution. Unpublished manuscript,
http://www.johndcook.com/normalbounds.pdf, 2009.

[8] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 2009.

[9] R. L. Graham and N. J. A. Sloane. Lowr bounds for constant weight codes. IEEE Transaction
on Information Theory, 1980.

[10] Bin Hua, Yu abd Xiao, Bharadwaj Veeravalli, and Dan Feng. Locality-sensitive Bloom filter
for approximate membership query. IEEE Transactions on Computers, 61(6):817–830, 2012.

[11] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse
of dimensionality. Proceedings of the thirtieth annual ACM . . . , 8:321–350, 1998.

[12] Adam Kirsch and Michael Mitzenmacher. Distance-sensitive Bloom filters. Proceedings of the
8th Workshop on Algorithm Engineering and Experiments (ALENEX), 2006:41–50, 2006.

[13] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press, 1997.

[14] Michael Mitzenmacher, Rasmus Pagh, and Ninh Pham. Efficient estimation for high similarities
using odd sketches. In Proceedings of the 23rd international conference on World wide web, pages
109–118. ACM, 2014.

[15] Rasmus Pagh. Locality-sensitive hashing without false negatives. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1–9. SIAM, 2016.

[16] Rasmus Pagh and Flemming Friche Rodler. Lossy dictionaries. In European Symposium on
Algorithms, pages 300–311. Springer, 2001.

[17] I.S. Tyurin. An improvement of upper estimates of the constants in the lyapunov theorem.
Russian Mathematical Surveys, 65:201–202, 2010.

15

A Binomial and Hamming ball volume bounds

Lemma 10 (Binomial bounds). Let 1≤k≤n=ω(1). Then:

1. If k=O(1),
(
n
k

)
=(1+o(1))nk/k!.

2. If k=ω(1) and k=o(
√
n), (

n

k

)
=(1+o(1))

1√
2πk

(ne
k

)k
.

3. If k=o(n), log
(
n
k

)
=(1+o(1))klog(n/k).

4. If k=Ω(n), log
(
n
k

)
=(1+o(1))H(k/n)n, where H(p)=−plogp−(1−p)log(1−p) is the binary

entropy function defined on [0,1].

Next, recall that |Bd(R)| denotes the volume of a Hamming ball of radius R in d-dimensions.

Lemma 11. [Hamming ball bounds] Assume that R≤d/2. The following are upper bounds on |Bd(R)|:

1. (Trivial) ∀R≤d/2, |Bd(R)|≤R
(
d
R

)
.

2. (Small R) When R=o(
√
d), |Bd(R)|≤2

(
d
R

)
.

3. (Large R) Let D(x||y)=xlog(x/y)+(1−x)log((1−x)/(1−y)) denote the “relative entropy” or
Kullback-Leibler Divergence1, defined for 0≤x,y≤1. Then

2d√
2πd

exp(−dD(R/d||1/2))≤|Bd(R)|≤2dexp(−dD(R/d||1/2)).

1Note that D(p||1/2)=1−H(p).

16

	Introduction
	Problem definition and notation
	Lower bounds
	Average error
	Point-wise error

	Upper bounds
	The vector signature method
	A filter with point-wise error
	A filter with average error

	Conclusion
	Binomial and Hamming ball volume bounds

