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Introduction

Set similarity join is a fundamental and well-studied database
operator. It is usually studied in the exact setting where the goal
is to compute all pairs of sets that exceed a given level of sim-
ilarity (measured e.g. as Jaccard similarity). But set similarity
join is often used in settings where 100% recall may not be im-
portant — indeed, where the exact set similarity join is itself
only an approximation of the desired result set.

We present a new randomized algorithm for set similarity join
that can achieve any desired recall up to 100%, and show theo-
retically and empirically that it significantly outperforms state-
of-the-art implementations of exact methods, and improves on
existing approximate methods. Our experiments on benchmark
data sets show the method is several times faster than com-
parable approximate methods. At 90% recall the algorithm is
often more than 2 orders of magnitude faster than exact meth-
ods. Our algorithm makes use of recent theoretical advances in
high-dimensional sketching and indexing that we believe to be
of wider relevance to the data engineering community.

Approximate Set Similarity Join

In the regular Ser Similarity Join, given setsA andB and thresh-
old λ, we must return

A ./λ B = {(a, b)|a ∈ A, b ∈ B, sim(a, b) > λ}.
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Figure 1: Example: We wish to find users with similar record collections.

(λ,φ)-Set similarity Join: Given two sets A and B, a thresh-
old λ ∈ (0, 1) and a recall φ ∈ (0, 1). Return

L ⊆ A ./λ B

such that Pr[(x, y) ∈ L] ≥ φ for any (x, y) ∈ A ./λ B.

Our Contributions

We present a new approximate set similarity join algorithm:
Chosen Path Similarity Join (CPSJOIN). We cover its theoretical
underpinnings, and show experimentally that it achieves high
recall with a substantial speedup compared to state-of-the-art
exact techniques. The two key ideas behind CPSJOIN are:

•A new recursive filtering technique inspired by the recently
proposed ChosenPath index for set similarity search [1],
adding new ideas to make the method parameter-free, near-
linear space, and adaptive to a given data set.

•Apply efficient sketches for estimating set similarity [2] that
take advantage of modern hardware.

Algorithm

Our algorithm follows a divide and conquer design based on
the Chosen Path Tree. In the Chosen Path Tree a child denotes
the subset of the parent set that shares some element. A path
p = (j1, . . . , jk) of length k then identifies the subset sharing el-
ements j1,...,k.

How to divide?

For a set x ∈ S, we sample a random hash function r : [d] →
[0, 1] and construct children for every element j ∈ x such that
r(j) < 1

λ|x|. Note that this places every similar pair in one child
on expectation. The subset of the data set S that survives to a
node with path p = (j1, . . . , jk) is given by

Sp = {x ∈ S | xj1 = 1 ∧ · · · ∧ xjk = 1}.

Figure 2: On expectation every similar pair is assigned to a subproblem.

When to conquer?

The BRUTEFORCE step removes a point x from the Chosen Path
branching process, instead opting to compare it against every
other point y ∈ S, if it satisfies the condition

1

|S| − 1

∑
y∈S\{x}

|x ∩ y|/t > (1− ε)λ. (1)

We claim that this condition minimizes the expected number
of comparisons performed by the algorithm: Consider a node
in the Chosen Path Tree associated with a set of points S while
running the CPSJOIN algorithm. For a point x ∈ S, we can ei-
ther remove it from S immediately at a cost of |S| − 1 compar-
isons, or we can choose to let continue in the branching process
(possibly into several nodes) and remove it later. The expected
number of comparisons if we let it continue k levels before re-
moving it from every node that it is contained in, is given by

∑
y∈S\{x}

(
1

λ

|x ∩ y|
t

)k
.

This expression is convex and increasing in the similarity
|x ∩ y|/t between x and other points y ∈ S, allowing us to state
the following observation:

Observation 1 (Recursion). Let ε = 0 and consider a set S con-
taining a point x ∈ S such that x satisfies the recursion condition in
equation (1). Then the expected number of comparisons involving x if
we continue branching exceeds |S| − 1 at every depth k ≥ 1. If x does
not satisfy the condition, the opposite is observed.

Figure 3: We introduce an adaptive technique for stopping.

Correctness and analysis

The random process underlying the Chosen Path Tree be-
longs to the well studied class of Galton-Watson branching
processes.Originally these where devised to answer questions
about the growth and decline of family names in a model of
population growth assuming i.i.d. offspring for every member
of the population across generations [4]. In order to make state-
ments about the properties of the CPSJOIN algorithm we study
in turn the branching processes of the Chosen Path Tree associ-
ated with a point x, a pair of points (x, y), and a set of points S.
Note that we use the same random hash functions for different
points in S.
Theorem 2. For every LSHable similarity measure and every choice
of constant threshold λ ∈ (0, 1) and probability of recall ϕ ∈ (0, 1)
we can solve the (λ, ϕ)-set similarity join problem on every set S of n
points using working space Õ(n) and with expected running time

Õ

∑
x∈S

min
kx

 ∑
y∈S\{x}

(sim(x, y)/λ)kx + (1/λ)kx

 .

Experimental Results

Figure 4: Join time speedup over ALLPAIRS at 90% recall.

We compare CPSJOIN to the exact set similarity join algo-
rithms in the comprehensive empirical evaluation of Mann et
al. [3], using the same data sets, and to other approximate set
similarity join methods suggested in the literature. We find that
CPSJOIN outperforms other approximate methods and scales
better than exact methods when the sets are relatively large (100
tokens or more) and the similarity threshold is low (e.g. Jac-
card similarity 0.5) where we see speedups of more than an or-
der of magnitude at 90% recall. We note that NETFLIX and
FLICKR represents two different data set archetypes. On aver-
age a token in the NETFLIX dataset appears in more than 5000
sets while on average a token in the FLICKR dataset appears in
less than 20 sets. Our experiment indicate that CPSJOIN brings
large speedups to the NETFLIX type datasets, while ALLPAIRS
exploits the presence of rare tokens to perform better on the
FLICKR type.
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