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Abstract

Random Feature mappings as first suggested in 2007 by Rahimi and Recht pro-
vide mappings that closely approximate feature spaces in O(nDd). Two new
approaches for random feature mapping were presented in 2013. ”Fastfood” re-
places the random matrix of Rahimi and Recht with an approximation that uses
the Walsh-hadamard transform to gain significant speed and storage advantages.
It promises to create accurate mappings for RBF kernels in O(nD log d) time.
Tensor sketching applies recent results in tensor sketch convolution to deliver
approximations for polynomial kernels in O(n(d + D logD)) time. This thesis
investigates the theoretic foundation of both methods. Providing a point of ref-
erence for future users, it highlights several relevant tradeoffs and considerations
for putting these methods to use in machine learning. Through independent
analysis and experiments it verifies speed and accuracy of the methods and for
the first time provides an accessible open-source implementation of both.
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Chapter 1

Introduction

In an increasingly digitally connected world the amount of data collected and
generated is undergoing explosive growth with no indication of slowing down[7].
90% of all data was generated in the last two years1. Unfortunately data on
its own is of little value. Without powerful tools to analyze and learn from it,
the data may never find its way into meaningful and valuable information. This
creates a growing demand for fast techniques that uncover complex relationships
between thousands of variables.

This thesis takes its offset in kernel methods. They allow linear classification
and regression methods to discover non-linear relationships at little extra cost.
Unfortunately the Support Vector Machines(SVMs) that traditionally utilize
kernel functions scale poorly in the size of the dataset. Recent developments
have produced SVMs that scale well in dataset size[10], but cannot take advan-
tage of kernel functions. A promising compromise was presented in 2007 by Ali
Rahimi and Ben Recht who suggested using random feature mappings to get
the best of both worlds[18]. In 2013 two new papers[13, 16] presented novel new
approaches along this line that both deliver significant speed improvements at
the cost of a, hopefully, negligible loss of accuracy. This would bridge the gap
and provide a method of discovering non-linear relationships between multiple
variables in linear time.

This thesis project aims a exploring these new techniques and making them
more available through four goals:

• To provide a reference point to allow anybody with an insight into com-
puter programming and linear algebra to understand and use these meth-
ods.

• To provide a fast and accessible open source implementation of the tech-
niques to the public.

• To discuss important kernel and data properties and how they effect the
accuracy and speed of the methods.

• To independently test the accuracy and speed of the techniques through
experiments.

1according to IBM research. See http://www-03.ibm.com/systems/power/software/
linux/powerlinux/bigdata.html
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We begin this thesis with a section aimed at grounding the methods in
machine learning and expanding on the potential benefits of using them in this
context. The second part of the thesis consists of a theoretical breakdown and
discussion of the techniques. We first present the idea of random projection
mapping as developed by Ali Rahimi and Ben Recht in the Random Kichen
Sinks method[18]. The first of the new methods, Fastfood[13], is then presented
as a direct extension to Random Kitchen Sinks. We will use the word Fastfood
to generally refer to this technique throughout this thesis. The second new
technique, tensor sketching[16], is presented next. It is also a random projection
technique, but follows a different basic approach than Random Kitchen Sinks.
A series of experiments are carried out to determine the accuracy and speed of
Fastfood and tensor sketching, and to test the methods in a machine learning
scenario. The results of these efforts are presented in the final chapter of the
thesis, following a short chapter that details the C++ implementation of the
methods created as part of the thesis project.

1.1 The Kernel Trick
We begin by introducing the Kernel Trick along with some general machine
learning concepts following the terminology of Bishop[3]. This will provide
a basis of discussion throughout the rest of the thesis and demonstrate the
usefulness of the random projections presented later.

In many machine learning scenarios we wish to find the parameters of a
decision function f(x) of the form:

f(x) = w0 + w1φ1(x) + · · ·+ wdφd(x) = wTφ(x) (1.1)

Such a function is called a linear model, since it represents a linear com-
bination of fixed nonlinear functions φj , or features, of the input variables [3].
Evaluating this function has uses in regression and classification. Learning the
parameters of such a function, ω, is a common machine learning task and many
popular algorithms like Support Vector Machines or Adaboost refer to various
ways of solving this optimization task[17]. Evaluating the decision function
with known parameters is referred to as testing while learning the parameters is
training and generally requires at least O(n) evaluations of the decision function
for a data set with n entries.

Figure 1.1: Mapping to a feature space where the classes are linearly separable
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By using a feature space φ, data that originally had a very complex decision
boundary can be mapped to a space where a simple linear separation of the
classes exists. The idea is illustrated in fig.1.1. Unfortunately the feature space
can often be of very high or even infinite dimensionality, making a direct com-
putation of the mapping undesirable and risking incurring effects of the curse
of dimensionality.

However, many learning algorithms do not require actually mapping the
input to the feature space φ, but just some notion of the ’difference’ between
datapoints in this space. They can be reformulated in a dual representation:

f(x) = wTφ(x) =
N∑
n=1

αn 〈φ(xn),φ(x)〉 (1.2)

The dual representation relies only on inner products so the feature space could
be any Hilbert space. Therefore it is desireable to find functions k(x,y) with
the property that:

k(x,x′) = φ(x)Tφ(x′) (1.3)
The big benefit of using this formulation is that the problem becomes ex-

pressed only in terms of k(x,x′) and we no longer have to work with φ. Such
functions are called kernel functions or just kernels. Kernel Methods were first
introduced in the field of pattern recognition in 1964[2] but have flourished with
their applications in Support Vector Machines introduced in 1995[5]. Their
properties are described by Mercers Theorem[14] which guarantees the expan-
sion of kernel functions to Hilbert spaces as in eq.1.3, requiring the kernels to
be positive, continuous and semi-definite. The representer Theorem[20] states
that the expansion exists under manageable conditions, even when the feature
space is of infinite dimensionality. See appendix B for further details. Using
kernel functions we can evaluate the decision function as:

f(x) =
N∑
n=1

αnk(xn,x) (1.4)

Using a dual representation a Support Vector Machine, originally a linear
classifier, can discover non-linear relationships. The kernel trick refers to the
idea of replacing expensive mappings to high dimensional feature spaces, φ,
with computationally inexpensive evaluations of a kernel function k(x,x′) and
learning through the dual representation of a problem.

1.1.1 Common Kernel functions
The choice of kernel function is a matter of the intended application and the
data. It is desirable to choose a kernel function that corresponds to a mapping
φ(x) into some feature space where the input is easily separable. Two of the
most commonly used types of kernel functions are Radial Basis Function kernels
and polynomial kernels.

Definition 1 (RBF kernels). Kernels depending only on the magnitude of the
distance between inputs, k(x,x′) = k(||x− x′||), e.g. the Gaussian kernel:

k(x,y) = exp(−||x− y||
2

2σ2 ) (1.5)
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Where σ is a free parameter. The corresponding feature space is of infinite
dimensionality[3].

Definition 2 (Polynomial Kernels). Polynomials of the inner product of the
input.

k(x,y) = (〈x,y〉+ c)p (1.6)

Where c is a constant. If c = 0, we call the kernel homogeneous. The corre-
sponding mapping consists of all p-degree terms of the input. We will see how
this fact becomes useful in the tensor sketching approach.

Table 1.1: Common definitions

n Size of a dataset. The number of entries.
d Dimensionality of input.
D Dimensionality of feature space or mapping.
p Degree of polynomial kernel.
C Offset of polynomial kernel.
σ Width of Gaussian RBF kernel.

Kernel Conversion

The Gaussian RBF and the polynomial kernel are related through the property
of the inner product:

||x− y||2 = ||x||2 + ||y||2 − 2〈x,y〉 (1.7)

So knowing the length of the involved vectors we can establish a linear time
conversion between an RBF kernel and a polynomial kernel.

1.1.2 The curse of support
When using the kernel trick to train a linear model, like in eq.1.2, methods like
Support Vector Machines solve a quadratic optimization problem on the Gram
matrix K containing all possible k(x, x′) values. This can lead to a prohibitive
cost if the support is large, that is, if the number of non-zero αn in 1.4 is
large. Unfortunately this is often the case for large scale problems [13] and we
come close to a cubic growth in run time for increasing n. As datasets grow to
hundreds of thousands of entries, the size of the optimization quickly becomes
prohibitive. The problem has been dubbed The Curse of Support[11].

The same problem arises when testing such models. Using a decision function
learned from a dual representation, see eq.1.2, it is necessary to evaluate k(x, x′)
for all pairs with the vectors that have non-zero αn. This has an O(Nd) cost.
If we would instead learn w directly the decision function could be evaluated in
O(d), see eq.1.1.

In 2006 T. Joachims introduced the first linear time algorithm for training
linear SVMs[10]. This is done by reformulating the SVM optimization problem.
Unfortunately this benefit is lost if we are still bound to the Gram matrix of
the kernel trick.
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1.2 A scaling solution
We can now recap and consider the heart of our problem. The well known kernel
trick provides a fast way to learn non-linear relations, but it does not scale well
as datasets grow large. Fast learning methods exists, but they do not support
using the kernel trick. This paper investigates two approaches that try to bridge
the gap. This would provide a method for training linear models that scales well
in the size of the dataset and allow the use of feature spaces to capture non-
linear relations. Both take their offset from the idea of approximating kernel
functions through random mappings to inner product spaces.

Using random features

Ali Rahimi and Ben Recht in 2007 suggested an alternative to the kernel trick[18,
17]. Instead of using the kernel function directly they propose explicitly mapping
data to a low dimensional inner product space using a randomized feature map
Z : Rd → RD such that:

E[〈z(x), z(x′)〉] = k(x,x′) = 〈φ(x),φ(x′)〉 (1.8)

Having such a mapping with good bounds we no longer need to learn through
the Gram matrix. We can work directly with a linear decision function:

f(x) = w0 + w1z1(x) + · · ·+ wDzD(x) = wTz(x) (1.9)

This decision function can be evaluated in O(D) time, the complexity de-
pends only on the dimensionality of the space z ∈ RD.

In other words a good mapping z would lift both the curse of dimensionality
from using high or infinite dimensional φ mappings and the curse of support
from using kernels. In the rest of the thesis we investigate two recent tech-
niques for constructing such mappings. In the end we return to the full machine
learning scenario and put the results to use in a Support Vector Machine.
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Chapter 2

Random Feature mappings

2.1 Random Kitchen Sinks
The first technique has been dubbed Fastfood[13] and is a direct extension
of the Random Kitchen Sinks framework introduced by Ali Rahimi and Ben
Recht[18],[17]. In this section we introduce the Random Kitchen Sink applica-
tion to approximating shift invariant kernels, in the next we look at the Fast-
food extension. Recall that shift invariant kernels consider only the distance
between the inputs, and we can generally rewrite them as single input functions
k(x,y) = k(x− y) like e.g. the Gaussian RBF kernel:

k(x− y) = exp(−||x− y||
2

2σ2 ) (2.1)

So the purpose of the method will be to construct a mapping z(x) = x′

such that 〈x′,y′〉 = e−
||x−y||2

2σ2 .

2.1.1 Bochner’s Theorem
The mathematical foundation for the Random Kitchen Sink method is Bochner’s
Theorem.

Theorem 2.1.1 (Bochner’s theorem1). Every positive definite function is the
Fourier transform of a positive measure. This implies that for any shift invariant
kernel k(x − y), there exists a positive measure µ such that the kernel is the
Fourier transform of that measure:

k(x− y) =
∫
Rd
µ(ω)e−i〈ω,(x−y)〉dω (2.2)

and the measure p = µ(ω)∫
µ(ω)

is a probability measure.

If the kernel k(x− y) is properly, scaled Bochner’s theorem guarantees that
its Fourier transform p(ω) is a proper probability distribution[18].

1The theorem was first published in 1932, the version given here is based on [8],[6],[18]
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This gives rise to the central step in the Random Kitchen Sinks method.
Looking at Bochner’s theorem we are given a measure p(ω) that assign weights
or probabilities to each ω ∈ Rd. Since p(ω) is a probability distribution

∫
p(ω) =

1 and we would expect that k(x−y) ≈ e−i〈ωµ,(x−y)〉 if ωµ is the average of p(ω).
Since E[p(ω)] = ωµ we can estimate the kernel by k(x− y) = Eω[e−i〈ω,(x−y)〉]
where ω is sampled from the p(ω) distribution. We can improve the estimate
by drawing multiple samples from the distribution ω1,ω2, · · · ,ωD ∼ p(ω) and
averaging their evaluations:

E

 1
D

D∑
j=1

ei〈ωj ,(x−y)〉

 = k(x− y) (2.3)

Since both p(ω) and k(x− y) are real we can expect the imaginary part of
the approximation to have no contribution and ei〈ωj ,(x−y)〉 can be replaced by
cosωTj (x− y).

1
D

D∑
j=1

cosωTj (x− y) (2.4)

We can rewrite this form using the sum of angles rule: cosωTj (x − y) =
cos(ωTj x)∗cos(ωTj y)+sin(ωTj x)∗sin(ωTj y). By setting zj(x) = {cosωTj x, sinωTj x}
we can express the sum as a sum of dot products:

E

 1
D

D∑
j=1

zj(x)T zj(y)

 = k(x− y) (2.5)

So to build a mapping z(x) we normalize with respect to the number of
samples D. z(x) consist of D entries where:

zj(x) = 1√
D
{cosωTj x, sinωTj x} (2.6)

The resulting map fulfills our purpose. It approximates the kernel space in
D dimensions according to the number of samples drawn. E[〈z(x), z(y)〉] =
k(x−y). We can use Random Kitchen Sinks to find a low dimensional random
feature space that approximates any shift-invariant kernel.

2.1.2 Alternative mappings
We may also follow a more direct route from eq.2.3 by splitting the sum to get:

1
D

D∑
j=1

eiωj(x−y) = 1
D

D∑
j=1

eiωj(x)eiωj(y) (2.7)

Looking at a single term of the sum:

eiωj(x)eiωj(y) = (cos 〈ωj ,x〉+ i ∗ sin 〈ωj ,x〉) ∗ (cos 〈ωj ,y〉 − i ∗ sin 〈ωj ,y〉)
= cos 〈ωj ,x〉 cos 〈ωj ,y〉+ sin 〈ωj ,x〉 sin 〈ωj ,y〉+ img

= zj(x)T zj(y) (2.8)
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As before the imaginary part, img, is expected to give zero contribution.
Looking at 2.8 we see that if we take the complex conjugate of one of the
mappings when evaluating the inner product the mapping in 2.6 is equivalent
to a mapping z′ with D entries where:

z′j(x) = 1√
D
eiωjx (2.9)

We show both of these mappings here because the z and z′ forms are used
interchangeably in [13] and [18] but do have an important difference in the latter
requiring a conjugation when taking inner products. Ali Rahimi and Ben Recht
further suggest using a mapping:

z′′j (x) = 1√
D

√
2 cos(ωtjx+ b) (2.10)

where b is drawn uniformly from [0, 2π] [18]. In our implementation we have
used the z mapping. It has a clear benefit over the z′ mapping in that it
can be implemented without the use of complex numbers. However, the z
mapping requires storing both the sine and cosine for each sample ω, effectively
doubling the feature dimensionality D. The z′′ mapping avoids this cost but
unfortunately little mathematical evidence is provided in favor of this mapping2

and experiments also showed the z mapping to be more accurate in practice.
See p.30.

2.1.3 Matrix representation
The main computations in these mappings are the dot products like ωTj x. To
perform the mapping we construct a matrix Ω ∈ RD×d so that these can more
easily be found through matrix multiplication:

Ωx =

ω1,1 ω1,2 · · · ω1,d
...

...
. . .

...
ωD,1 ωD,2 · · · ωD,d

 ∗
x1

...
xd

 =

ω
T
1 x
...

ωTDx

 (2.11)

Using the Ω matrix we can map the data in O(Dd) using:

zj(x) = 1√
D
{cos([Ωx]j), sin([Ωx]j)} (2.12)

Or for the z′ map:

z′j(x) = 1√
D

exp(i[Ωx]j) (2.13)

The matrix representation makes it clear how mapping can be performed in
O(Dd) through matrix multiplication.

2There exist at least two different version of the 2007 paper, putting different emphasis on
this mapping.
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2.1.4 Sampling Ω
To use the method we need to sample the entries in Ω from a distribution that
corresponds to the chosen kernel. According to Bochner’s theorem we can use
the inverse Fourier Transform to find the sample distribution matching a given
shift invariant kernel.

2.1.5 Gaussian kernel
Returning to the Gaussian RBF kernel we set the bandwidth σ = 1.

k(x− y) = e−
||x−y||2

2 (2.14)

Bochner’s theorem guarantees the existence of a measure p(ω) such that:∫
Rd
p(ω)e(−i〈ω,(x−y)〉) = e−( ||x−y||2

2 ) (2.15)

So to find p(ω) we apply the inverse Fourier Transform to the kernel:

p(ω) = 1√
(2π)d

∫
Rd
k(x− y)e〈ω,(x−y)〉d(x− y) = (2 ∗ π)− d2 e−

||ω||
2 (2.16)

The sampling distribution for ω is a Gaussian function. The same as given in
the original paper[18]. However, if we rewrite it slightly we see this corresponds
to the regular form of the normal distribution for σ = 2π d−1

2 .

p(ω) = 1
σ
√

2π
e−
||ω||2

2 , σ = 2π
d−1

2 (2.17)

If we choose another bandwidth for the Gaussian RBF kernel we adjust the
variance of the distribution accordingly.

2.1.6 Error Bound
Hoeffdings inequality guarantees a fast convergence between the kernel and the
approximation[18]:

Pr[|〈z(x), z(y)〉 − k(x,y)| ≥ ε] ≤ 2 exp −Dε
2

4 (2.18)
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2.2 Fastfood
The key idea of Fastfood is to replace the Ω matrix of Random Kitchen Sinks
method with another matrix, V . Specifically one with properties that allow for
very fast vector multiplication while still delivering a mapping comparable to
using Ω. The Fast Walsh Hadamard Transform (FWHT) allows us to multiply
with a Hadamard matrix in log-linear time[9]. This allows us to exploit the
fact that Hadamard matrices, when combined with diagonal Gaussian matrices,
have properties very similar to dense Gaussian matrices, like Ω[13].

2.2.1 Matrix approximation
Recall that the matrix Ω from Random Kitchen Sinks is a D × d Gaussian
random matrix. d is the dimensionality of the input space and each ωi∈{1..D}
is an independent sample from a d dimensional Gaussian. To approximate the
Ω matrix we construct V :

Ω ≈ V = 1
σ
√
d
SHGΠHB (2.19)

Where d = 2l for some l ∈ N.
The construction looks complex but the underlying idea is simple. A num-

ber of samples are drawn and then combined through a series of permutation,
transforms and scaling to form a matrix which resembles Ω. To see how the
process works we will examine the components used to form V .

Components

The matrix V is a product of several matrices:

Diagonal random matrices:
The matrices S,G and B are diagonal random matrices. B has random
±1 values on its main diagonal, G has random Gaussian entries and S is
a random scaling matrix. All of these are computed once and then stored.

A permutation matrix:
The Π matrix is a random permutation matrix Π ∈ {0, 1}dxd. It can be
implemented as a lookup table by sorting random numbers.

The Walsh-Hadamard matrix:
H is the Walsh-Hadamard matrix:

Definition 3 (Walsh-Hadamard Matrix).

H2 =
[
1 1
1 −1

]
and H2d =

[
Hd Hd

Hd −Hd

]
The matrix is only defined for powers of 2. With a normalization factor
d−

1
2 it forms the Walsh-Hadamard Transform[9].

2.2.2 Constructing the approximation
Sampling and transforming

The random Kitchen Sinks method rely on samples from a distribution matching
the kernel of interest. In the Fastfood method we use a combination of samples

10



from a normal distribution N (0, 1) on the diagonal of G and samples from a
spectrum depending on the kernel of interest on the diagonal of S[13].

The Walsh-Hadamard transform

TheWalsh-Hadamard transform 1√
d
H is closely related to the Fourier Transform[12,

9]. It decomposes an arbitrary vector x ∈ Rd into a superposition of Walsh func-
tions. This makes a sparse input vector more dense[1]. In Fastfood it rotates
the Gaussians of G resulting in a denser matrix more similar to a fully random
Gaussian matrix, like Ω. Equation 2.20 shows an example for a d = 2, HG
computation.

HG =
[
1 1
1 −1

]
∗
[
g1 0
0 g2

]
=
[
g1 g2
g1 −g2

]
(2.20)

This is done twice through 1√
d
HGΠH. The permutation matrix Π ensures

that the order of the decomposition is scrambled so no single Gij gets too
influential.

A longer chain of Walsh-Hadamards and permutations will bring the result
even closer to a fully random Gaussian matrix, but it has been shown that two
steps are enough to provide a sufficient amount of decorrelation[13].

Disregarding the normalization, this forms a matrix G′:

G′ = HGΠHB (2.21)

Each entry G′ij is a result of adding and subtracting zero-mean independent
Gaussian random variables. Since sign changes retain Gaussian properties, each
entry in G′ is a zero-mean Gaussian. The B matrix ensures that there is no
correlation between the entries of each row, thus any row of G′ is i.i.d. Gaussian.
The entries can be calculated by G′ij = BjjH

T
i GΠHj [13].

Scaling

The permutation and sign changes due to Π and B do not affect the length of
the rows:

||G′i||2 = [HGΠHB(HGΠHB)T ]ii, i ∈ [d]
= [HGH(HGH)T ]ii
= ||G||2Frobd (2.22)

Because of the nature of the Hadamard transform all rows end up having the
same length. One way to see this is to consider the first HG which will always
yield a matrix with all elements from G on each row. No matter the permutation
and sign inversion to the second H it will maintain the same combination of
pairs with same or different signs on each column. The result when combined
with the first HG will be rows with d elements. Each element will square to
||G||2frob + k and the k’s will always sum to zero. This is illustrated in fig.2.1
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HGH1 =



a b c d
a −b c −d
a b −c −d
a −b −c d

 ∗


1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 −1 −1 1




1

= {(..+ b+ c)(..− b+ c)(..+ b− c)(..− b− c)}

||HGH1||2 = (a2 + b2 + c2 + d2)d+ k = ||G||2frobd

Figure 2.1: Properties of HGH Looking across the colums of the hadamard
we see that it contains the same number of adding and subtracting combinations.
When squaring the result the first and fourth column will cause additional 2bc
terms and the second and third −2bc terms. In this way k always sums to zero.
This property is not affected by permutation of the rows or sign inversion along
the columns.

All the rows ofHGΠHB have the same length and by scaling with ||G||−1
frobd

− 1
2

we can get length 1 rows.3 This is an undesired property since we want the ma-
trix to behave like the entries of a Gaussian matrix and this property is a sign
of row correlation. Having correlated rows means that the map different entries
zj(x) will be correlated. Take the extreme case where each row in V ′ is the
same. The result is that each zj(x) is the same and this corresponds to only
drawing a single ω when approximating the integral given by Bochner’s the-
orem. To decorrelate the rows we use the scaling matrix S. Using S we can
adjust the V matrix depending on the kernel of interest. In this case we are
focused on the Gaussian RBF kernel, but we may choose any RBF kernel[13].

For the Gaussian RBF Le et al.[13] suggest sampling entries in S from a
distribution:

[13](2π) d2A−1
d−1r

d−1e
r2
2 (2.23)

While this solution appears elegant it also provides for an unnecessarily complex
implementation. Since the purpose in this case is to simulate the behavior of
a d dimensional vector with each element sampled from N (0, 1) we implement
the scaling matrix as:
Require: G−1

frob, N ← N (0, 1)
Ensure: Scaling matrix diagonals Si
1: for all i ≤ d do
2: Length← 0
3: for all j ≤ d do
4: Length← Length+N.sample()2

5: end for
6: S[i]←

√
(Length) ∗G−frob1

7: end for
8: return S

3[13] is very brief on this point and also suggest scaling with ||G||−
1
2

frob
d− 1

2 . We have at-
tempted to contact the authors of the paper but with no luck. We have tested both approaches
and it appears to be a typo in the original text.
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While this means taking (d2) samples instead of just d it only needs to be
done once when initializing the mapping. The benefit is that the implementation
is much simpler and rely on a standard normal distribution already available in
most programming languages.

Normalization

Finally the matrix is normalized to fit the width of the kernel, σ, and the
dimensionality of the input space, d.

1
σ
√
d

(2.24)

This last step can be added to the S matrix implementation to reduce the
run time complexity of the algorithm

Stacking

Since V is a square d × d matrix it cannot directly replace Ω which is D × d.
Normally we will want have many more samples than dimensions of the input
space D � d. To do this we will need to form D/d instances of V and stack
them to achieve the desired D × d size:

V T = [V1, V2, ..., VD/d] (2.25)

Figure 2.2: Building V in the case where D=3d.

The resulting matrix V will have properties similar to Ω but entails several
computational advantages.

2.2.3 Computational advantages
Using the Fast Walsh-Hadamard Transform it is possible to compute each Hix
in O(d log d) for any vector x ∈ Rd [1]. For D/d blocks the total time for
matrix-vector multiplication Hx becomes O(D log d). The remaining matrix
multiplications in V can all be carried out in linear time in D. It is easy to
see for the diagonal matrices G,S,B and can be achieved for the Π matrix by
implementing it as a lookup table[13]. This adds a total storage and operation
cost of 4D for multiplication. The total operation count of Fastfood isO(D log d)
and it uses O(D) storage.
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This is a significant improvement of the O(Dd) CPU and storage cost of
Random Kitchen Sinks.4

2.2.4 Feature map
The feature map is the same as derived in Random Kitchen Sinks, eq2.6, but
now replacing the Ω matrix with V .

zj(x) = 1√
D
{cos [V x]j , sin [V x]j} (2.26)

This would have the same desirable property: 〈z(x), z(y′)〉 = e−
||x−y||2

2σ2 . By
changing way we sample the S matrix we can make the mapping match any
RBF kernel[13].

2.2.5 Error Bound
The error bound for Fastfood closely follows the one given for Random Kitchen
Sinks in eq.2.18. The approximation error of a single d ⊗ d block has been
shown to be within a factor O(

√
log d/δ) of Random Kitchen Sinks for a given

error probability δ. See theorem 6[13]. We will not go into further proofs here,
but the expected inverse relationship between the error and D is confirmed
experimentally in section 4.1.2.

4If D � d the Walsh-Hadamard transform will still bound Fastfood to O(d log d) time and
will make the approximation slower than the exact calculation if D < log d). For practical
uses of Fastfood D � d.
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2.3 Tensor Sketching
The second technique we will explore is based on tensor sketching. Tensor
sketching in turn relies on fast convolution of Count Sketches[15] to approximate
polynomial kernels[16]. We first look at using the tensor product directly as a
mapping for the polynomial kernel. We then introduce a version of the Count
Sketch algorithm. Finally we show how Count Sketch can be used make fast
and accurate sketches of the tensor product using the fast convolution method
of Pagh[15]. Such sketches fulfill the purpose of approximating kernel values,
but here for the polynomial kernel. End the end of the section we will have a
mapping z such that:

E[〈z(x), z(x′)〉] = (〈x,x′〉+ c)p (2.27)

2.3.1 The tensor product and the polynomial kernel
Definition 4 (Tensor Product). Given a vector x ∈ Rd its 2-level tensor prod-
uct is defined as:

x(2) = x⊗ x =


x1x1 x1x2 · · · x1xd
x2x1 x2x2 · · · x2xd
...

...
. . .

...
xdx1 xdx2 · · · xdxd

 ∈ Rd
2

(2.28)

Here written as a matrix, but we normally interpret the tensor product as a
vector. The general p-level tensor product:

x(p) = x⊗ ...⊗ x, p - 1 times (2.29)

is a mapping Rd → Rdp . It is similar to a Cartesian product, but ordered and
with multiplication between the entries in each tuple. We introduce a general
notation along those lines:

x(p) =
d⊗

i1,..,ip=1

∏
j∈{i1,··· ,ip}

xj (2.30)

The big ⊗ is understood to provide p indices between 1 and d, the mul-
tiplication part provides the product of the corresponding entries of x. The
resulting vector will be xp1, x

p−1
1 x2, . . . , x

p
d. In this way the tensor product con-

tains all possible p-degree ordered multiples of the elements of x. This makes it
an explict mapping for the p-degree polynomial kernel as stated in definition 2.
Lemma 2.3.1. Given two vectors x,y ∈ Rd the inner product of their p-level
tensor products is exactly equal to the value returned by the homogenoeus poly-
nomial kernel:

〈x(p),y(p)〉 = 〈x,y〉p (2.31)
Proof. Given two vectors x = x1, x2, ..., xd and y = y1, y2, ..., yd. Their p-level
tensor products are :

x(p) =
d⊗

i1,..,ip=1

∏
j∈{ik,··· ,ip}

xj (2.32)
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and

y(p) =
d⊗

i1,..,ip=1

∏
j∈{ik,··· ,ip}

yj (2.33)

We can directly write the inner product between them as:

〈x(p),y(p)〉 =
d,··· ,d∑

i1,...,ip=1
(

∏
j∈{i1,··· ,ip}

xj) ∗ (
∏

j∈{i1,··· ,ip}

yj) (2.34)

〈x(p),y(p)〉 =
d,··· ,d∑

i1,...,ip=1
(

∏
j∈{i1,··· ,ip}

xjyj) (2.35)

Change the order of evaluation.

〈x(p),y(p)〉 =
p∏ d∑

i=1
xiyi

= (
d∑
i=1

xiyi)p = 〈x,y〉p (2.36)

Lemma 2.3.2. By appending a constant
√
c to a vector x ∈ Rd the tensor

sketch of x can provide an explict mapping for any polynomial kernel.

〈x(p),y(p)〉 = (〈x,y〉+ c)p (2.37)

Proof. appending
√
c to the end of x and y in the previous proof we arrive at

the statement:

= (
d+1∑
i

xiyi)p = (
d∑
i

xiyi +
√

(c) ∗
√

(c))p = (〈x,y〉+ c)p (2.38)

So the tensor product provides a mapping z(x) allowing us to work directly
in a feature space corresponding to any polynomial kernel. Since the tensor
product belongs to Rdp it is not a scalable approach however. Calculating the
mapping directly takes O(Ndp) for a dataset of N points in Rd. For cases
with low dimensional data and using a polynomial kernel of low degree, the
tensor product approach scales well in the number of points. However if d or
p are large a direct tensor product mapping quickly becomes computationally
more expensive than using the kernel trick and suffering the curse of support. To
improve on this we can use recently introduced methods[15],[4] of approximating
the tensor product. These methods make use of the Count Sketch algorithm
first introduced by Chrikar et. al. in 2011[4].
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2.3.2 Count Sketch
Count sketch is an algorithm for approximating counts of high frequency ele-
ments in a stream. It maintains two families of t hash functions. One family
ht(x) : N → [b] and another st(x) : N → ±1. For storage it uses an array of t
hash tables, each containing b buckets. Each item x encoutered on the stream
is run through the t h(x) and s(x) functions. Each h(x) provides an index and
each s(x) indicates whether to increment or decrement the counter at that po-
sition. The resulting table can be used to approximate a number of properties
of the stream. The tensor sketching approach uses a slightly modified version
of this algorithm adapted to work on vectors rather than streams:
Definition 5 (Count Sketch). Given a vector x ∈ Rd and two 2-wise indepen-
dent hash functions h : N→ {1, ..., D} and s : N→ ±1. The Count Sketch of x
is defined as CS(x) = {C1, ..., CD} ∈ RD where:

Cj =
∑
i∈Sj

s(i)xi, Sj = {i ∈ [d]|h(i) = j} (2.39)

The iterator set Sj includes all integers i = {1, ..., d} where h(i) = j.

Figure 2.3: An example of a CountSketch with d = 6 and D = 4.

Since h(i) maps to only one j computing the entire count sketch thus re-
quires only one run over x, for each element subtracting or adding its value to
the corresponding entry in CS(x). This means that the Count Sketch can be
constructed in linear time in the dimensionality of the vector, O(d). An example
is given in Figure 2.3. This version of the Count Sketch has also been introduced
as The hashing trick[22]. It has the useful property that the inner product of
two vectors is maintained by Count Sketch within a bounded variance.
Lemma 2.3.3.

E[〈CS(x), CS(y)〉] = 〈x,y〉 (2.40)
Proof. Given x,y ∈ Rd and Count Sketch as defined in 2.39.

〈CS(x), CS(y)〉 =
D∑
g

(
∑
i∈Sg

s(i)xi) ∗ (
∑
j∈Sg

s(j)yj) (2.41)
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Keeping the same iterator set S we can simplify the expression.

〈CS(x), CS(y)〉 =
D∑
g

∑
i,j∈Sg

s(i)s(j)xiyj (2.42)

We now recall the definition of s(i). Since s : N→ ±1 is uniformly distributed:

E[s(i)s(j)] =
{

1 if i = j
0 if i 6= j

(2.43)

So:

E[〈CS(x), CS(y)〉] =
D∑
g

∑
i∈Sg

xiyi =
d∑
i

xiyi = 〈x,y〉 (2.44)

To see that the variance is tightly bounded we introduce another lemma:

Lemma 2.3.4.

V ar[〈CS(x), CS(y)〉] = 1
D

(
∑
i!=j

x2
i y

2
j +

∑
i!=j

xiyixjyj) (2.45)

Proof. See [22] Appendix A.

Representing the count sketch as a polynomial

The current representation of the count sketch as a vector of sums(see 2.39) can
be changed to a polynomial representation. We construct a polynomial where
each term corresponds to an element of the vector. Consider the polynomial
fx(u) below:

fx(u) =
d∑
i=1

s(i)xiuh(i) = a0u
0 + a1u

1 + a2u
2 + · · ·+ aDu

D (2.46)

The a0 term corresponds to
∑
i∈S0

s(i)xi, the a1 term corresponds to
∑
i∈S1

s(i)xi
etc. The coeficcients of the polynomial matches the entries of the vector repre-
sentation. In this way a D − 1 degree polynomial can be made that represents
the Count Sketch CS(x):

Definition 6 (polynomial representation of Count Sketch). Given a vector
x ∈ R and two 2-wise independent hash functions h : N → {1, ..., D} and
s : N→ ±1, the polynomial:

p(u) =
n∑
i=1

s(i)xiuh(i) (2.47)

represents the Count Sketch of x by its coefficients.

The polynomial representation of the Count Sketch will be useful in under-
standing the Tensor Sketching approach.
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2.3.3 Tensor Sketching
The count sketch algorithm can be used to provide count sketches of tensor
products. We call these tensor sketches.

Definition 7 (Tensor Sketch). A tensor sketch is a Count Sketch of a tensor
product.

TSp(x) = CS(x(p)) (2.48)

Using lemma2.40 we see:

E[〈TSp(x), TSp(y)〉] = E[〈CS(x(p)), CS(y(p))〉] =
〈
x(p),y(p)

〉
(2.49)

combining this with lemma 2.3.1 and 2.3.2 we get:

E[〈TSp(x), TSp(y)〉] = (〈x,y〉+ c)p (2.50)

So TSp(x) provides an approximate mapping for the polynomial kernel as
given in definition 2.

Fast convolution

A recent paper by Pagh[15] introduces a fast technique for constructing tensor
sketches through fast convolution of count sketches. The heart of this technique
is polynomial multiplication through the Fast Fourier Transformation.

Returning to the polynomial representation of the Count Sketch in eq.2.46
we now consider the Fast Fourier Transformation of two such polynomials.

FFT (fx(u)) = {fx(ω0), fx(ω1), · · · , fx(ωD−1)} = {
d∑
i=1

s1(i)xi(ω0)h1(i), · · ·

(2.51)

FFT (fy(u)) = {fy(ω0), fy(ω1), · · · , fy(ωD−1)} = {
d∑
j=1

s2(j)yi(ω0)h2(j), · · ·

(2.52)
By taking the componentwise multiplication of the two we can get a vector

with D entries.

FFT (fx) ∗ FFT (fy)D =
d∑
i,j

s1(i)s2(j)xiyj(ωD)h1(i)+h2(j) mod D (2.53)

Notice that the exponents are constrained by a mod D to concentrate the
sums to D terms. By choosing hash functions S(i, j) = s1(i)s2(j) and H(i, j) =
h1(i) + h2(j) mod D we can rewrite the entries as:

d∑
i,j

S(i, j)xiyj(ωt)H(i,j) (2.54)
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At this point we consider a direct computation of the Count Sketch of x ⊗ y
using S(i, j) and H(i, j):

fx⊗y(u) =
d∑
i,j

S(i, j)xiyjuH(i,j) (2.55)

It is clear that the discrete fourier transform of the sketch yields the same entries
as 2.54.

FFT (fx⊗y(u)) = FFT (fx(u)) ∗ FFT (fy(u)) (2.56)

So by performing the Fourier Inverse on 2.54 we have a fast method of computing
CS(x(2)) from two different Count Sketches of x. The method generalizes to
sketching any p-level tensor product:

Definition 8. Fast computation of p-level tensor sketch.

Compute p Count Sketches using p different hash-functions h(x) : N→ [D]
and s(x) : N → ±1. Now using component-wise multiplication compute the
p-level tensor sketch as:

CS(x(p)) = FFT−1(FFT (CS1(x)) ∗ · · · ∗ (FFT (CSp(x))) (2.57)

Corresponding to CS(x(p)) using hash-functions H and S as:

H(i1, ..., ip) =
p∑
k=1

hk(ik) mod D (2.58)

S(i1, ..., ip) =
p∏
k=1

sk(ik) (2.59)

Since computing the Count Sketch is O(d) and FFT is O(DlogD) this tech-
nique delivers a total runtime in O(p(d+DlogD)).

Error bounds

Approximation improves with D. The variance of the mapping is bounded by:

V ar[〈CS(x(p)), CS(y(p))〉] ≤ 1
D

(〈x,y〉2p + ||x||2p||y||2p) (2.60)

See [16] for a proof of the bound.
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Chapter 3

Implementation

As part of this project Fastfood and tensor sketching was implemented in C++.
For the sake of future usefulness both algorithms are implemented to work with
the Shark machine learning library. Shark is an award winning open source
C++ library1. Hopefully providing implementations of these algorithms for an
efficient open source library like Shark might make them more likely to find uses
in production. The Shark library is available at:
http://image.diku.dk/shark/
The C++ implementation of Fastfood and tensor sketch are available at:
https://bitbucket.org/johanvts/fastkernel
The code is available as a working extension of Shark including unit tests etc.
The repository includes build instructions and precompiled versions ready for
use with Shark. Figure 3.1 presents a short overview of the central parts of
the codebase. To use the methods we leverage the powerful Shark ”transform”
method. An example call looks like this:

transform(shark::Data<shark::RealVector> Dataset,transformerClass)

Where transformerClass is an instance of ”TensorSketch” or ”FastFood-
Stacked”. Details about the implementation is reserved for the online docu-
mentation, but we will discuss a few central decisions in the rest of this section.

1http://image.diku.dk/shark/
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/
client.............Binary for testing methods and generating data set
Common

hadamardmatrix.cpp
FWHT(RealVector x).........................FWHT transform
FWHTn(RealVecor x).....................Normalized transform

Uniform distribution.cpp.........Tools for uniform distributions
Normal distribution.cpp...........Tools for normal distributions
· · · ............Tools for kernels, data management, timekeeping etc

FastFood
fastfood.cpp

FastFood(unsigned int d) ............d dimensional V matrix
vProduct(RealVector x)...........................returns Vx
gausssampler.cpp ...........................Gaussian support
stacker.cpp.................................Stacked V matrix

FastFoodStacked(unsigned int d,unsigned int D) .D x d
Matrix V
map(const RealVector x).......................returns Vx

TensorSketch
CountSketch.cpp.................................Sketches vectors
TensorSketch.cpp................................Tensor Product

TensorSketch(int d, int D, int p)....d vector in Dp skecth
class
() x..................................return TensorSketch x(p)

Experiement.cpp.........Implements Speed and accuracy experiments
SVM.cpp....Examples for using the methods with internal and external
SVM trainers

Figure 3.1: Implementation Overview

3.0.4 Fourier transform
Central to the performance of tensor sketching is a fast fourier transform. For
this purpose the FFTW2 library was used. This library was chosen because it
has a proven track record of excellent performance across multiple platforms
and is free for all purposes. Since FFTW is a C library the FFTW++3 wrapper
was used.

3.0.5 Hadamard transform
The performance of the Fastfood library hinges on a Fast Walsh-Hadamard
transform. TheWalsh-Hadamard transform can be implemented through FFTW
as a multidimensional Discrete Fourier Transform, but this proved troublesome
using the FFTW++ wrapper. The IT++ library4 provides a FWHT method,
but little information on performance was available. Spiral5 provides a opti-

2http://www.fftw.org/
3http://fftwpp.sourceforge.net/
4http://itpp.sourceforge.net/4.3.1/
5http://www.spiral.net/software/wht.html

22

http://www.fftw.org/
http://fftwpp.sourceforge.net/
http://itpp.sourceforge.net/4.3.1/
http://www.spiral.net/software/wht.html


mized C package for FWHT but no wrapper. To keep the number of external
library dependencies low and the code readable we instead used a simple direct
implementation which takes only a few lines of code. A small experiment was
carried out to verify speed and accuracy, see appendix A. Implementing an op-
timized Fast Walsh Hadamard transform library might provide a speed up but
our native solution delivers on the O(d log d) time expectancy of the FWHT.

3.0.6 Testing probability based methods
The central methods of Fastfood and tensor Sketching are listed in table 3.1.
The output of these methods is expected to have the listed properties, but a
specific run being completely off does not necessarily mean that the method is
wrongly implemented. This poses a challenge to normal unit testing and makes
it harder to debug and test code.

Class Method Output Properties Error

Count Sketch sketchVector E[〈CS(x), CS(y)〉] = 〈x, y〉 2.45
Tensor Sketch map E[〈TSp(x), TSp(y)〉] =

〈
x(p), y(p)〉 2.60

Fastfood vProduct E[V x] = E[Gx] 2.18
Stacker map E[V x] = E[Gx] 2.18

Table 3.1: Probability based testing

To test these requirements we used the statistics component of the Boost li-
brary6. The methods were evaluated multiple times and the average was checked
to be within the expected error range. For the Count Sketch and Tensor Sketch
methods the output is checked against 〈x, y〉. For the FastFood methods the
output is checked against the expectancy E[Gx] = Mµx where Mµ contains
averages of the used Gaussian.

6http://www.boost.org/
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Chapter 4

Experiments

Fastfood and tensor sketching both promise to deliver fast and accurate kernel
estimates[13, 16]. To test the speed and performance of the methods we con-
ducted a series of experiments on the implementation introduced in the previous
chapter. We first investigate the accuracy of each method and try to pinpoint
the conditions that give the most accurate kernel approximation. In section.4.2
we look at the speed of each method and how the theoretical expectations com-
pare to our observations. Finally we put each method to use on the MNIST
classification task to see how the combination of kernel approximation and linear
classification compare to using the kernel trick and non-linear support vector
machines.

4.1 Kernel approximation
Previous work has shown that the methods can work[16, 13], but do not provide
much insight in the technical challenges involved in implementing and optimizing
these methods. These experiments have two purposes. To verify the theoretic
expectations on accuracy and speed independent of the original implementations
and to extract new information on the kernel and input data properties involved
in attaining the best results.

To recap, the promise of the mappings are that:

E[〈z(x), z(y)] = k(x, y) (4.1)

So to test this promise experimentally on a dataset of n entries we can use
these error functions:

Errorabs. = 1
n

n∑
x,y

|〈z(x), z(y)〉 − k(x, y)| (4.2)

Errorrel. = 1
n

n∑
x,y

|〈z(x), z(y)〉 − k(x, y)|
k(x, y) (4.3)

The relative error function is troublesome to work with here because some
kernels are very close to zero, a small error in the estimation of these values
can skew the average relative error severely. The absolute value on the other
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hand is hard to compare across different kernels and parameters. To get an
easily comparable and readable error measure we measured the relative error
as above, but only include pairs where the relative error was ≤ 100%. If the
percentage of inputs fulfilling this condition is less than 100% it is reported
along with Errorrel as E%.

Figure 4.1 show kernel estimates from the Fastfood method plotted against
exact kernel values. Each point represents a combination of two vectors x, y.
The coordinate corresponds to (k(x, y), 〈z(x), z(y)〉). A perfect mapping would
manifest as a narrow 45-degree line. Previous results analyze the precision
on an aggregated level[16]. Using this plot we can more easily get a nuanced
understanding of the methods ability to estimate the kernel value.

Figure 4.1: Accuracy test of Fastfood.d = 16, D = 512, σ = 1.5, ErrorRel. =
3.5%

Figure 4.1 shows Fastfood estimates for a dataset of 100 vectors sampled
uniformly from [0, 1]16 using 512 features.

4.1.1 Tensor Sketch input normalization
Using randomly generated data sampled from [−1, 1] we experienced much lower
accuracy for Tensor Sketching than expected. Vectors sampled uniformly i.i.d
from [−1, 1]d have an expected inner product of zero. This means that we
get a high relative error, and it also makes it difficult to investigate a larger
spectrum of the kernel range because values concentrate on zero. With no cost
to generality we can transform data into a positive range before sketching. This
gives a much broader range of values and should make classification easier. It
also demonstrates that the polynomial kernel is not shift invariant. Looking at
figure 4.2 we see the difference in the range and accuracy of estimation kernel.
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(a) x ∈ [−1, 1]d, Errorrel. = 42%, E% = 39% (b) x ∈ [0, 1]d, Errorrel. = 13%

Figure 4.2: Tensor sketching random data
d = 16, D = 128, p = 2, C = 0

Unless anything else is stated explicitly the experiments described here were
conducted with data sampled i.i.d. from a uniform distribution between [0, 1].

4.1.2 Increasing the feature count
The first experiment concerns the feature count, D. Looking at the error bounds
given for Fastfood,p.14, and tensor sketching,eq.2.60, we would expect the ap-
proximation error to fall sharply with increasing feature count.

Figure 4.3: Error decreases as a function of feature count,D.d = 16, σ = 2, p = 2

The results in fig.4.3,4.4 and table.4.1 are averages over 16 runs of each
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algorithm. Each run on a randomly generated dataset of 10000 vector pairs
from vectors ∈ [0, 1]16. The relative error depends heavily on the choice of
kernel parameters. By choosing dominating C and σ that effectively place a
strict limit on the range of the kernel we can artificially lower the error. We will
discuss this further in the next experiment. For this experiment we use C = 0
and σ = 2 as these parameters give a decent spread over the kernel range.

Table 4.1: Kernel estimation error d = 16, σ = 2, p = 2, C = 0

D FastfoodAbs. FastfoodRel.% TensorSketchAbs. TensorSketchRel.%
16 0.083 11.82 8.39 44.01
32 0.057 8.14 5.56 34.32
64 0.047 6.74 4.99 28.57
128 0.033 4.68 3.63 22.02
256 0.022 3.08 2.19 12.98
512 0.015 2.15 1.32 7.83
1024 0.011 1.56 0.81 4.95
2048 0.0077 1.08 0.39 2.74
4096 0.0052 0.73 0.32 2.04
8192 0.0036 0.51 0.31 1.73

The performance seems on par with the results presented in the original
papers[13, 16]. This is particularly interesting for Fastfood since our implemen-
tation uses a novel way of sampling the scaling matrix.

Tensor sketching does show a more fluctuating performance than Fastfood.
As an example, for D = 4096 the best tensor sketch mapping had an accuracy
of 1% but the worst 4.1%. This is likely due to the way we choose h functions.
They are mappings sampled uniformly i.i.d. to map from [d] to [D]. While this
gives a good performance expectancy, it also allows cases where the performance
is off. In the worst case the whole input is hashed to the same position in the
sketch. Future work could study how to best construct these hash functions. It
seems that for many applications collisions could be completely avoided since
we can choose D � d. This could improve the accuracy of tensor sketching
beyond the results shown here.
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Figure 4.4: Fastfood estimates improve with D.d = 16, σ = 3

4.1.3 Gaussian RBF Kernel range
The estimates are not equally good across the range of the kernel. As we
mentioned briefly in the previous experiment kernel parameters greatly effect
accuracy of the estimates.

Figure 4.5: Changing the kernel range. Left:sigma = 1.5, Errorrel. = 8.3%,
right σ = 2, Errorrel. = 3.6%. Both d = 16, D = 128.

Fig.4.5 gives an impression of how the approximation suffers for lower kernel
values. There is an interesting tradeoff between kernel resolution and the ability
to accuratly estimate the kernel. Figure 4.6 shows how the average relative error,
in discreet sections of the kernel range, drops for higher values. This highlights
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Figure 4.6: Error over kernel range. d = 8, D = 128, sigma = 0.6, ErrorAbs. =
0.059. Shows the distribution in absolute error

the importance of choosing the right σ value. By choosing sigma to fit data in
the high part of the Gaussian RBF range estimates are expected to be more
similar to using the kernel, but with a downside of less resolution for a classifier
to work with.

This behavior is likely due to the way vector entries are summed in the
Fastfood map. The ||x−y|| of the kernel captures the difference between inputs
on each dimension, the 〈vj ,x〉 of the mapping captures the difference on an
aggregated level. Consider in the extreme case two orthogonal unit vectors. The
kernel will easily identify these as different, but they have the same expected
value in the Fastfood mapping. The B and S matrices of Fastfood ensure that
they will not likely have the exact same value, but this effect makes it hard for
Fastfood to maintain differences based on variations across the input dimensions.
Vector pairs that are dissimilar across all dimensions and similar vectors are less
distorted by the aggregation. Increasing σ improves the error because it lessens
the kernels discrimination between dissimilar pairs, not because it improves the
accuracy of Fastfood.
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4.1.4 Mappings for Fastfood
Testing the mappings presented for Random Kitchen Sinks in chapter 2.1 we
found that the z′′ mapping was faster, as expected, but also represented a
step down in terms of accuracy. Hence the implementation and experiments
presented as part of this thesis uses the z mapping as defined in eq.2.12:

zj(x) = 1√
D
{cos([Ωx]j), sin([Ωx]j)} (4.4)

Results for the z′′ mapping can be found in appendix C.

4.1.5 Sparse input for Tensor Sketch
The main loss of information suffered in the Tensor Sketch approach is from
collisions in the Count Sketching step. In illustration 2.3 e.g. we see a collision
occurring on the second and last entry in the sketch. Having sparse vectors
should reduce the loss of information suffered in such collisions because the
chance that one of the colliding inputs is zero increases. At the same time all
non-zero entries are still appearing in the sketch. To verify this experimentally
we conducted a series of experiments with differing input sparsity.

Figure 4.7: Relative error over input sparsity. d = 40, D = 128, p = 2, n = 100.
Average over 12 runs.

When sparsity goes up in our random dataset, the polynomial kernel val-
ues generally drop, making it hard to isolate the effect of sparsity alone. To
measure it we need to scale the non-zero entries up as sparsity increases. We
construct data vectors x with entries xd =

√
k

d−s where s is the number of sparse
entries. We must also make sure that the zero-entries remain in a fixed part
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of the constructed input, having random sparsity would again make the actual
kernel smaller and thus increase relative error. With this rather artificial input
construction kernel value remains constant. Notice that this construction of
the input data is only necessary for measuring the isolated effect of sparsity on
kernel approximation.

Looking at fig.4.7 we see that the effects of increasing sparsity are compli-
cated. While the error generally does drop as sparsity increases, it also rises
especially in the beginning. This might be due to the fact that scaling the entries
up also mean that each collision that does occur causes greater distortion.

4.1.6 Accuracy comparison
We can use eq.1.7 to make a direct comparison between Fastfood and tensor
sketching. The Fastfood method works on shift-invariant kernels and the length
of the original input is lost when mapping. Tensor sketching on the other
hand maintains a good estimate of the original input length. Fig.4.8 shows
this difference when we use eq.1.7 to directly transform the polynomial kernel
estimates into estimates for the Gaussian RBF and vice versa.

(a) Fastfood mapping converted (b) Tensor sketch mapping converted

Figure 4.8: Converting estimates
d = 16, p = 2, σ = 2

This does not provide a way to use tensor sketching as a map for RBF
kernels, but it gives some impression of the amount of information loss. It is
clear that Fastfood maintains much less information after mapping than ten-
sor sketching. The converted estimates are very inaccurate for Fastfood and
very precise for tensor sketch. If we use information on the lengths from the
original input Fastfood does provide an accurate conversion, see fig.D.1 in the
appendix. This shows how Fastfood captures only the directions of vectors
while tensor sketching also conserves the length. Pham and Pagh presents the
idea of applying tensor sketching for the Gaussian kernel through Taylor-series
approximations[16]. This experiment suggests that such methods might provide
more accurate mappings for the Gaussian RBF than Fastfood.
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4.2 Speed
The attraction of both methods is the promise of a significant speed improve-
ment over other random feature map methods. The asymptotic performances
presented in the previous sections are listed in table4.2. Each experiment shows
a table breaking down the expected run-times in the varying parameter.

Method Time Storage
Fastfood O(nD log d) O(D)
Tensor Sketch O(np(d+D logD)) O(pd logD)

Table 4.2: Time and Storage costs.Number of samples n. Input dimensions
d.Number of features D. Degree of polynomial p.

4.2.1 Samples n

Fastfood Tensor Sketch
Evaluate map O(n) Evaluate map O(n)

O(n) O(n)

Table 4.3: Speed costs of n

Figure 4.9: Speed measured as a function of data samples. d = 16, D = 16

Both algorithms show linear dependency on the number of samples in the
input. This is in accordance with the theoretical expectation. Recall that the
problem with using kernel methods to begin with is the cubic growth of the
Gram matrix, we would be no better off if these methods did not scale much
better in the data set size.

32



4.2.2 Features D

Fastfood Tensor Sketch
Draw samples O(D) Choose range of h functions O(1)
Repeat the FWHT O(D) Perform FFT O(D logD)
Evaluate map O(D) Evaluate map O(D)

O(D) O(D logD)

Table 4.4: Speed costs of D

Figure 4.10: Speed measured as a function of Features. d = 16, n = 1000

Again both algorithms look very linear. While tensor sketching is expected
to show log-linear performance when varying D it is still very fast and the
additional logD factor does not dominate for even a very high amount for
features. Using the z mapping,eq.2.26), requires evaluating and storing both the
sine and cosine of each feature. The alternative z′′ mapping improves the speed
of Fastfood as show in appendixC. Still tensor sketching is faster which is likely
due to the highly optimized FFTW1 library handling the Fourier transforms at
the heart of our tensor sketch implementation. D does not affect the size of
the transform in FastFood which is always determined by d, but it does affect
the number of transforms needed, D/d, as illustrated in fig.2.2. As such an
optimized FWHT library might improve FastFood speed over D.

4.2.3 Input dimensions d

While FWHT is O(d log d) Fastfood always performs D/d transforms. For all
practical applications of FastfoodD � d. As d doublesD/d halves and D

d d log d)
1http://www.fftw.org/
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Fastfood Tensor Sketch
Choose domain of h,s functions O(1)

FWHT O(d log d) Sketch input O(d)
Evaluate map O(1) Evaluate map O(1)

O(d log d) O(d)

Table 4.5: Speed costs of d

remains constant except for the logarithmic term. time consumption grows in
a logarithmic fashion in d. This is reflected in the results shown in fig4.11.

Figure 4.11: Speed measured as a function of input dimensions.D = 4096, n =
1000

Initially Fastfood seems to be become faster when increasing the input di-
mensionality. A possible explanation is the cost of object allocation. The Fast-
food implementation creates and stacks D/d matrices V ′, see fig.2.2. For low
d and high D as in the left side of fig.4.11 D/d becomes very large and object
instantiating appears to dominate the run time. Other than that, asymptotic
results are as expected. Tensor sketching exhibits linear growth in time con-
sumption while Fastfood delivers on the promise of logarithmic dependency on
the input dimensions.

4.3 Image Recognition
The accuracy and speed experiments suggest that the methods are suitable
for use in training linear models. To test the methods in a complete machine
learning scenario we used the popular MNIST2 dataset. MNIST contains 60.000

2http://yann.lecun.com/exdb/mnist/
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images of handwritten digits and the task is to classify each image as a number
[0 − 10]. There are already excellent results for this dataset in a number of
implementations and the goal here is not to improve the results on MNIST. We
use MNIST to test how the speed and accuracy of Fastfood and tensor sketching
combined with a linear SVM compares to using the classic kernel and non-linear
SVM approach in an end-to-end machine learning scenario.

4.3.1 Kernel method
For training using the kernel trick we trained a linear model using Sharks build
in multiclass One-Versus-All SVM. Kernel parameters were chosen to be in the
area known to give good results. For the Gaussian RBF we used σ = 8.27. For
the polynomial kernel we chose a 4-degree polynomial with no offset. We use
the regularization parameter C = 100 for training in all cases. The MNIST
webpage reports a best known error rate of 1.4% for a Gaussian RBF and 1.1
for a 4-degree polynomial. Our results are very similar. Tuning the parameters
might improve the accuracy further.

Method d/D Error% Training s Trans. s
SVM w. 4-deg poly.kernel 780 1.8 10029 NA
Tensor Sketch + LIBLINEAR 4096 2.6 509 35
SVM w. Gaussian RBF 780 1.5 76299 NA
Fastfood + LIBLINEAR 4096 1.9 1177 93

Table 4.6: MNIST results All experiments conducted on a 2.1Ghz 64bit AMD
processor. Numbers show for random mappings are averages over 10 runs.

4.3.2 Random Feature Mappings
Using Fastfood or tensor sketching for learning is a two step procedure: transfor-
mation and training. First we transformed the training and test datasets using
our implementation of Fastfood and tensor sketching. The parameters were cho-
sen to match the kernels used for the kernel based approach: σ = 8.27,p = 2.
For maximum performance we chose a number of features significantly larger
than the inputs 780. Looking at the accuracy experiments this is necessary to
get good kernel estimates. After transforming data we used the LIBLINEAR3.
library to train a support vector machine. LIBLINEAR is a widely used linear
SVM trainer[21].

An issue that requires careful consideration when working with the trans-
forms is data handling. As an example the Fastfood mapping conducted here
uses 4096 features. Each feature requires storing two values, the sine and co-
sine of 〈ωj ,x〉. The result is that the transformed dataset is around 8-9 times
larger than the original. For MNIST the transformed training and test data
took up around 7GB. Shark implements many useful tools to handle such chal-
lenges4. However, when using the external SVM library it was necessary to
write the transformed data to disk at a considerable disadvantage. This can be

3http://www.csie.ntu.edu.tw/~cjlin/liblinear/
4http://image.diku.dk/shark/sphinx_pages/build/html/rest_sources/tutorials/

concepts/data/datasets.htmlShark Data Containers
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improved by integrating a linear time trainer in Shark, but the transforms will
always carry a considerable storage cost because the number of features D has
to be significantly larger than the original input dimension d. However this is a
cost that is paid before training, both methods offer an O(D) storage cost for
classification.

4.3.3 Results
The results can be seen in table.4.6. The accuracy of the model created by
using kernel methods should be seen as a benchmark for the random features
based methods, it represents the result achievable by a 100% accurate mapping
z(x)T z(y) = k(x, y). LIBLINEAR found very accurate models using both Fast-
food and the tensor sketching. The results clearly support the idea that using
random features can provide significant speedups to learning. Accuracy suffers
slightly, but training times drops to fractions of the time needed for non-linear
trainers.
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Chapter 5

Conclusions and future
directions

This thesis described the Fastfood and tensor sketching methods for kernel ap-
proximation based on random projections. The theoretical foundation of each
method was presented and experiments were carried out to analyze the strengths
and weaknesses of each method. Additionally an open source C++ implemen-
tation of both methods was presented and made available as part of the project.

We demonstrated that the Fastfood and tensor sketch algorithms can pro-
duce low dimensional mappings that provide accurate estimates of the Gaussian
RBF kernel and the polynomial kernel respectively. And perhaps more impor-
tantly that they can do it in linearithmic time. Experiments on the MNIST
dataset demonstrated performance on par with kernel based methods on a well
known classification problem. We took a novel approach to analyzing the meth-
ods in looking more closely at the properties of kernel parameters, normalization,
input sparsity and mapping choices. We saw how choosing σ represents a trade
off between accuracy and resolution for the Fastfood method. Normalization
was shown to have a large impact on tensor sketching accuracy, due to the
nature of the polynomial kernel, and we discussed the diverse effects of input
sparsity on tensor sketching. A novel way of sampling the Fastfood scaling ma-
trix for Gaussian RBF kernels is introduced in this thesis. Experiments verify
that results remain on par with the more cumbersome original method. All of
these findings cover important choices when putting the methods to use.

Fastfood and tensor sketch both give fast and accurate results and both scale
linearly in dataset size. This thesis provides a point of reference for developers
and others who wish to make use of this power to implement effective machine
learning techniques on large datasets.

During the course of this thesis a number of possibilities for future research
naturally appeared. For tensor sketching future work could include investigating
the optimal choice for the h hash-functions. The theoretical and experimental
work in this thesis suggest that accuracy can be further improved for the tensor
sketch method by eliminating all count-sketch collisions. Future work along
this line could improve the average accuracy performance, and perhaps provide
tighter bounds on the precision for the tensor sketch approach.
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For Fastfood we suggested the integration of an optimized Fast Walsh Hadamard
Transform library into the implementation. This might reduce time consump-
tion for the Fastfood transform. Future work might also well focus on developing
a more accurate version of the z′′ mapping to capitalize on the potential speed
improvement show in this work.

In this thesis we have focused on applications of Fastfood and tensor sketch-
ing in machine learning, but the methods represent general embedding of infor-
mation and might well find uses in other fields.
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Appendix A

Verify speed of
Walsh-Hadamard
Transform

Optimized libraries like Spiral1 are available to perform system optimized Fast
Walsh-Hadamard Transform(FWHT). We also implemented a simple FWHT
to be a native part of the Fastfood package2, it’s simpler to test and time and
reduces the amount of external libraries needed to get started. However for use
in production it is recommended to use an optimized FWHT. When installing
the FastFood library through CMAKE use the “Use Spiral WHT” setting to
enable the third party solution from Spiral.

It is central to the Fastfood technique that the Walsh-Hadamard be per-
formed in O(d log d) where d is the dimensionality of the input. A small test
was carried out to show that the native solution adheres to the bound.

A.1 Experiment
1000 vectors of random numbers wheres generated for each power of two from 21

to 210. Each of the corresponding dimension. Every vector was transformed in
two ways. First a transformation using the FWHT implementation. Secondly
a transform by matrix multiplication with the Walsh-Hadamard matrix using
the Boost library.

A.2 Results
The results support the expected O(d log d) bound for Fast Walsh-Hadamard
Transform.

1http://www.spiral.net/software/wht.html
2common/hadamardmatrix.cpp
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Figure A.1: Speed comparison of FWHT to Boost optimized matrix multipli-
cation

A.3 Using the Timer class
The timer class is located in common.

#include <timer.h>

An instance of timer is started, stopped or reset. It can be queried for
hours, minutes, seconds, milliseconds, microseconds or nanoseconds. A query
on a started clock gives a split time. Querying or stopping a clock before starting
it gives an error. The best way to use to class is:

• instantiate timer

• start timer

• —perform action—

• stop timer

• query timer at will
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Appendix B

Mercers Theorem

The matehematical foundation for the Kernel trick is Mercers theorem. It can
be used to guarantee the existence of kernel functions with the property of 1.3.

Theorem B.0.1 (Mercers Theorem). Let the function k : X × X → R be
symmetric, continous and positive semi-definite. Then there exists a countable
sequence of functions φ = {φi}i∈N and a sequence of positive real numbers λ =
{λi}iN such that,

k(x, x′) =
∑
j

λjφj(x)φj(x′) = 〈φ(x), φ(x′)〉 (B.1)

by
φ(x) = {φj(x) +

√
λj} (B.2)

Where λj > 0 and φj is orthonormal on L2(X).

The theorem is very usefull since it garantees that a function satifying the
conditions actullay correspond to an inner product in some vector space. In
order for k(x,y) to be a valid kernel function, the Gram matrix K, whose
elements are given by k(xn,xm), should be positive semidefinite for all possible
choices of the set xn.[3, p.295][19].
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Appendix C

Alternative mapping for
Fastfood

The alternative mapping1:

z′′j (x) = 1√
D

√
2 cos(ωtjx+ b) (C.1)

Has the clear benefit that it requires storing only one number pr. feature.
As expected this reduces the time necessary to perform the Fastfood transform:

Unfortunately this speedup comes at the expense of accuracy in the kernel
estimate. As can be seen in fig.C.4 there seems to be a lower bound on the
accuracy which might well stem from the adding of the random variable b in
the z′′ map.

Figure C.4: Error decrease as a function of feature count,D.d = 16, σ = 3

1See p.8
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Figure C.1: Speed measured as a function of data samples. d = 16, D = 16

Figure C.2: Speed measured as a function of Features. d = 16, n = 1000
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Figure C.3: Speed measured as a function of input dimensions.D = 4096, n =
1000
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Appendix D

Converting Fastfood with
original vector lengths

Figure D.1: Fastfood mapping converted. d = 16, p = 2, σ = 2

In fig.D.1 we converted a Fastfood Gaussian RBF mapping to estimate the
polynomial kernel. Unlike the result shown in fig.4.8 we here used information
on the original vector lengths of the input. The results indicate that Fastfood
does provide good estimates of the directions of vectors.
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