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Resumé

Beregning baseret på fællestræk mellem datapunkter fra sto-
re mængder højdimensionel data er en hjørnesten i mange dele af
moderne datalogi, fra kunsting intelligens til informationssøgning.
Den store mængde og kompleksitet af data gør, at vi almindeligvis
forventer, at der ikke kan findes præcise svar på mange udregnin-
ger uden uoverstigelige krav til forbruget af enten tid eller plads.
I denne afhandling bidrager vi med nye eller forbedrede approk-
simationsalgoritmer og datastrukturer til en række problemer der
omhandler fællestræk mellem datapunkter. Specifikt:

• Vi præsenterer en algoritme der finder en tilnærmelsesvis fjer-
neste nabo hurtigere end med den tidligere hurtigste metode.

• Vi kombinerer denne algoritme med de bedste kendte tek-
nikker til tilnærmelsesvis nærmeste nabo for at finde en nabo i
tilnærmet ring.

• Vi introducerer den første ikke-trivielle algoritme til tilnærmet
afstandsfølsomt medlemskab uden falske negativer.

• Vi påviser at indlejringer der bevarer nærmeste nabo kan udføres
hurtigere ved at anvende idéer fra rammeværket udviklet til
hurtige afstandsbevarende indlejringer.

• Vi præsenterer en hurtig ny randomiseret algoritme til mæng-
de sammenføjning med sammefaldskrav, flere gange hurtigere end
tidligere algorithmer.
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Abstract

Similarity computations on large amounts of high-dimensional
data has become the backbone of many of the tasks today at the
frontier of computer science, from machine learning to informa-
tion retrieval. With this volume and complexity of input we com-
monly accept that finding exact results for a given query will entail
prohibitively large storage or time requirements, so we pursue ap-
proximate results. The main contribution of this dissertation is the
introduction of new or improved approximation algorithms and
data structures for several similarity search problems. We exam-
ine the furthest neighbor query, the annulus query, distance sensi-
tive membership, nearest neighbor preserving embeddings and set
similarity queries in the large-scale, high-dimensional setting. In
particular:

• We present an algorithm for approximate furthest neighbor im-
proving on the query time of the previous state-of-the-art.

• We combine this algorithm with state-of-the-art approximate
nearest neighbor algorithms to address the approximate annulus
query.

• We introduce the first non-trivial algorithm for approximate
distance sensitive membership without false negatives.

• We show that nearest neighbor preserving embeddings can be per-
formed faster by applying ideas from the framework of Fast
Distance Preserving Embeddings.

• We introduce and analyse a new randomized algorithm for set
similarity join, several times faster than previous algorithms.
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Chapter 1

Introduction

1.1 Similarity Search

Computers today are increasingly tasked with analyzing complex con-
struct like music or images in ways that are sensible to humans. How-
ever a computer has no more appreciation for a series of bits represent-
ing the Goldberg variations than for some representing the sound of
repeatedly slamming a car door. Barring a revolution in artificial intelli-
gence computers have no inherent interpretation of the data they store.
This poses a barrier to the ways computers can help us.

At the same time the amount of digital data has exploded, both in
complexity and volume. Consider as an example the fact that early dig-
ital cameras like the 1990 Dycam Model 1 could capture and store 32
low resolution black and white images1 and was too expensive for more
than a few professional users. Today a modern smart phone can cap-
tures and store thousands of high quality color images, and the number
of smart phone users is counted in billions. These images are of course
not only captured, but shared, compared and searched in all manner
of ways. Similar explosive developments have taking place with almost
any kind of digital data imaginable, from video and music, to sensor
data and network traffic data.

This development means large amounts of data has become cheap
and accessible, providing one way of circumventing the barrier: Given
large amounts of available data, computers can learn by example. Com-
puters are extremely well suited for quickly comparing large amounts

1The Dycam 1 featured a 375 x 240 pixel sensor, capturing 256 shades of grey.
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of data and figuring out exactly how similar they are. Consider the task
from before: Classify a recording as either “Bach” or “Car door”. With
no concept of music or sound this is a difficult task for a computer. But if
the computer has access to a database of examples from both categories
we might simply ask which example is most similar to the recording and
return the category of that example. This is idea behind the k-Nearest
Neighbors (k-NN) classifier, a simple but powerful machine learning al-
gorithm. At the heart of it sits the Nearest Neighbor (NN) problem: Given
a set of data points and a query point, return the point most similar to
the query. This is part of a larger family of problems that might gener-
ally be called similarity search problems: Answer questions about a set
of points based on the similarity of the points to a query point. The NN
problem is probably the most fundamental similarity search problem,
and we will often return to it as it encompasses many of the challenges
in the field. Similarity search problems are vital components of many
machine learning techniques, and they are equally important in many
other areas of computer science like information retrieval, compression,
data mining and image analysis. The main contribution of this thesis is
a series of improvements in solving various similarity search problems,
both in the speed and space necessary to solve them, and in the quality
of the answers. Before we can begin to study the problems, we must
first address two obvious questions about the definition above:

How did the images, music, traffic data etc. above turn into points,
and what does it mean for two points to be similar? Readers familiar
with high-dimensional metric spaces and O-notation can skip ahead to
Section 1.2.

1.1.1 Representing data

To process our data we first need to represent it digitally. As an exam-
ple think of a collection of text-only documents i.e. strings of letters and
spaces. In order to store them in a computer, a normal method is to
agree to some standard of translating letters into numbers, then store
the numbers representing the document on the computer. Say the doc-
uments all contain only d = 2 letters each. If we map letters to their
index in the alphabet, a → 0, b → 1 etc., we can represent the data as
points in the set N2: the set of all pairs of natural numbers2. We call d
the dimensionality or features of the data.

2Table 1.1 lists the standard notation for working with sets that we will be using.
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(0, a)
(0, a)

(1, b)
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(3, d)

(4, e)

(4, e)

(5, f )
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1

2

2

BC

BE

ED

Figure 1.1: The strings “BE”, “BC” and “ED” represented as points in
N2 and the hamming distance between them.

Notation Description
R Real numbers
N Natural numbers

{0, 1} Set of bits
∅ The empty set

{∅} Set containing ∅
[n] Integers from 1 to n

B(x, r) Radius r ball around x
Xd {(x1, . . . , xd)|xi ∈ X}

X ∪Y Union of X and Y
X ∩Y Intersection of X and Y
P(X) The power set of X

Table 1.1: Set notation

Next, we need to define what it means for
two documents to be similar? Often the concept
of similarity is intuitively understood, but hard to
put an exact measure on. For our purposes we
will need exact measures. In our example, one
idea is to consider strings to be similar if they
contain the same letters in many positions. This
would suggest using the Hamming distance, H,
i.e. counting the number of positions where the
letters differ, illustrated in Figure 1.1. We then
have an exact distance function that we can use
as an inverse measure for similarity. When data
is represented as points in some set X and dis-
tances between the points are measured using a
distance function D we say that the data is in the space (X, D). In the
example we used (X = N2, D = H). Of course we could have chosen
many other distances functions, it depends entirely on the desired no-
tion of similarity. In this dissertation we will assume that our data is
already mapped into a well defined space. Further, we will assume that
the distance function used captures the similarities relevant to the given
application. From now on “similarity” will be a formalized, measurable
concept, and it will be the inverse of “distance”. We will return to this
discussion in Section 1.3.2.
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Notation Description
S Input data set
n |S|
q Query point
d Data dimensionality

D Distance function

Table 1.2: Frequently used symbols and their meaning.

1.1.2 Scale and dimension

Solving problems at scale means that we have to be able to keep up
with the explosive growth in data. For most similarity search prob-
lems, including the NN problem, we can always answer a query by
computing the similarity of the query point, q, and every point in the
input data set, S. This works well when S is small, but when sud-
denly the amount of data explodes, so does our query time. We say
that the query time is linear in n, where n is the size of S. To han-
dle the explosive growth in data, we must be able to answer the query
while only looking at a small part of S. In fact, as S grows, the per-
centage of S we need to look at must rapidly decrease. That is, we
will be interested in solutions that provide query time sub-linear in n.
Imagine that we are given a set of surnames and tasked with build-
ing a phone book. Instead of mapping each letter to a number like
in the previous example, we might simply map each name to its al-
phabetic order. With this mapping we can represent the strings in
a 1-dimensional space, simply points along a line (see Figure 1.2).

1Andersen, A.

2Andersen, D.

3Andersen, F.

4Anderson, D.

5Anderson, F.

Figure 1.2: A very
short phonebook.

When we are looking up a name in the phone book we
are solving a 1-dimensional search problem. Using binary
search we can solve it in logarithmic time in the number of
names. Logarithmic query time is a very desirable property
because it is highly sub-linear. Roughly speaking, every
time the length of the phone book doubles, we will only
need to look at one extra name as we search for a number.
This enables us to “keep up” with the explosive growth in
data (See figure. 1.3).

If we are trying to capture more complicated relations than a strict
ordering, having only one dimension is very limiting. When under-
standing if two pieces of music are similar, we might employ a myriad
of dimensions, from tempo to scale to the meaning of the lyrics etc.
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Figure 1.4: A voronoi diagram for n = 20 points in Rd=2

To capture these complicated relationships we need to work in high-
dimensional spaces. As an example, consider extending the mapping in
Figure 1.1 from strings of length d = 2 to length d = 50. While we can
no longer easily visualize the space, the mathematical concepts of e.g.
(N50, H) are perfectly sound and workable. However, it is a challenge
to develop scaling algorithms when d is large.

In book

In search

2 4 6 8 10
Years

50

100

150

200

250

Names

Figure 1.3: Names in the phone
book and how many we will see
using a binary search.

For d = 2 this is already much more difficult.
A classical result in computational geometry is
the use of the Voronoi diagram (See Figure 1.4)
for solving the NN problem in (R2, `2). The dia-
gram partitions R2 into n cells, one for each data
point. For any location in a cell the nearest point
in S is the data point associated with the cell.
Using this diagram we are again able to get log-
arithmic query time using point location: Given a
new point x ∈ R2, find the associated cell. Hav-
ing found the cell, the answer to the NN problem
is simply the point associated with that cell. Both
computing the Voronoi diagram and solving the point location problem
have long histories and many different approaches have been developed,
see [22] for an overview.

We can expand the idea of the Voronoi diagram to d > 2, however
the size of the diagram grows exponentially as nd/2, so this will only
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be viable as long as d is small. In general for low-dimensional met-
ric spaces there are many well-known similarity search algorithms (e.g.
[45], [21]) but they all suffer from exponential growth in either storage
or query time as d grows. Although d is not growing as fast as n, this
is prohibitively expensive even for relatively small d. It is not doing us
much good to achieve sub-linear growth in n if all gains are minute to
the costs incurred from the high-dimensional setting. This makes these
methods prohibitively expensive for large-scale, high-dimensional data.
There are strong indications that this is not a failing of the solutions, but
rather an inherent property of the problem [114, 2]. To avoid this curse
of dimensionality a field of approximation algorithms has been thriving
in recent years. Here we concede to losing accuracy in exchange for
algorithms that have query time sub-linear in n and linear in d. The
space is allowed to grow linearly in n and d. In this thesis we further
expand this field with a set of new algorithms for solving approximate
similarity search problems in high-dimensional spaces.

1.2 Problems and results

The articles that make up this dissertation are listed below in the order
their content appears here:

1. Rasmus Pagh, Francesco Silvestri, Johan Sivertsen and Matthew
Skala. Approximate Furthest Neighbor in High Dimensions [97].
SISAP 2015. Chapter 2.

2. Rasmus Pagh, Francesco Silvestri, Johan Sivertsen and Matthew
Skala. Approximate furthest neighbor with application to annulus
query [98]. Information Systems 64, 2017. Chapters 2 and 3.

3. Mayank Goswami, Rasmus Pagh, Francesco Silvestri and Johan
Sivertsen. Distance Sensitive Bloom Filters Without False Nega-
tives [62]. SODA 2017. Chapter 4.

4. Johan Sivertsen. Fast Nearest Neighbor Preserving Embeddings.
Unpublished. Chapter 5.

5. Tobias Christiani, Rasmus Pagh and Johan Sivertsen. Scalable and
robust set similarity join. Unpublished. Chapter 6.
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We will state the problems for any space (X, D) but the results are
all for particular spaces. (See Table 1.1 and 1.4).

Perhaps the most central problem in similarity search is the nearest
neighbor (NN) problem. Using the notation in Table 1.2, we state the
problem as:

Nearest Neighbor (NN) Given S ⊆ X and q ∈ X. Return x ∈ S, such
that D(q, x) is minimized.

To circumvent the curse of dimensionality we will be relaxing our prob-
lems in two ways. We will use the NN problem to illustrate the relax-
ations.

First, we will accept an answer x′ if it is a c-approximate nearest
neighbor. That is, we will require only that D(q, x′) ≤ cD(q, x), where
x ∈ S is the actual nearest neighbor. The furthest neighbor and annu-
lus query algorithms presented in this dissertation are generally only
applicable when c > 1. However, this is often the case: Since we are
searching for similar, but not necessarily equal things, the most similar
and the almost most similar will often be equally useful.

We can also consider cases where the similar thing is much closer
(more than a factor c) to the query than the rest of the dataset. In such
settings the returned c-approximate nearest neighbor is also the actual
nearest neighbor.

Secondly we will allow the distance, r, to be a parameter to the prob-
lem. We say that x′ is r-near if D(q, x′) ≤ r. The relaxed approximate
near neighbor problem (ANN) is then stated as:

Definition 1.1 ((c, r)-Approximate Near Neighbor). For c > 1, r > 0. If
there exists a point x ∈ S such that D(x, q) ≤ r, report some point x′ ∈ S
where D(x′, q) ≤ cr, otherwise report nothing.

These relaxations were first introduced by Indyk and Motwani in [72].
They also show that we can use (c, r)-approximate near neighbor to find
the c-approximate nearest neighbor by searching over settings of r. In
many applications achieving a fixed similarity might also suffice on its
own, regardless of the existence of closer points.

Next we will introduce the problems addressed in this dissertation.
For each problem we will give a formal definition, as well as a an
overview of the main results and ideas used to obtain them.
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1.2.1 c-Approximate Furthest Neighbor (AFN)

While a lot of work has focused on nearest neighbor, less effort has gone
into furthest neighbor. That is, locating the item from a set that is least
similar to a query point. This problem has many natural applications,
consider for example building a greedy set cover by selecting the point
furthest from the points currently covered. Or as we will see in Chap-
ter 3 we might use furthest neighbor in combination with near neighbor
to find things that are “just right”. We formally define the approximate
furthest neighbor problem:

Definition 1.2 (c-Approximate Furthest Neighbor). For c > 1. Given
S ⊆ X and q ∈ X. Let x ∈ S denote the point in S furthest from q, report
some point x′ ∈ S where D(x′, q) ≥ D(x, q)/c.

The furthest neighbor in some sense exhibits more structure than the
nearest neighbor. Consider a point set S ⊆ R2. No matter what q ∈ X
is given, the point x ∈ S furthest from q will be a point on the convex
hull of S as illustrated in Figure 1.5. If the convex hull is small and
easily found an exact result could be efficiently produced by iterating
through it. However, the convex hull can contain O(n) points and in
high dimensions they are not easily found. A way to proceed is to
approximate the convex hull, for example by the minimum enclosing ball.
This always contains a

√
2-AFN [60], but for c <

√
2 we need a better

approximation.

Figure 1.5: A point set
with its convex hull and
minimum enclosing ball.

In Chapter 2 we present an algorithm for c-AFN. We
get Õ(dn1/c2

) query time using Õ(dn2/c2
) space. This

work is the result of a collaborative effort with Ras-
mus Pagh, Francesco Silvestri and Matthew Skala. The
work was published as an article [97], and later in an
extended journal version [98]. Here we give a brief
high-level introduction to the main result. Chapter 2
also contains analysis for a query independent varia-
tion of the data structure, space lower bounds as well
as experimental results. The main algorithm is simi-
lar to one introduced by Indyk [70]. His work intro-
duces a decision algorithm for a fixed radius version
of the problem and proceeds through binary search.
We solve the c-AFN problem directly using a single
data structure.
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near

far

ai(x− q)
∆

Figure 1.6: Distribution of ai · (x− q) for near and far x

We use the fact that in Rd, projections to a random vector preserve
distances as stated in the following lemma:

Lemma 1.1 (See Section 3.2 of Datar et al. [51]). For every choice of vectors
x, y ∈ Rd:

ai · (x− y)
‖x− y‖2

∼ N (0, 1).

when the entries in ai are sampled from the standard normal distribution
N (0, 1).

So we can expect distances between projections to be normally dis-
tributed around the actual distance. Points further from q will generally
project to larger values as illustrated in Figure 1.6. This is helpful since
it means that we can use well known bounds on the normal distribution
to argue about the probability of a point projecting above or below some
threshold ∆. We want to set ∆ so points close to q have a low probability
of projecting above it, but points furthest from q still has a reasonably
large probability of projecting above ∆. If we then examine all points
projecting above ∆, one of them will likely be a c−AFN. To do this our
structure uses a priority queue to pick the points along each random
vector with largest projection value, as described in Section 2.2.1.
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1.2.2 (c, r, w)-Approximate Annulus Query (AAQ)

Sometimes we want to find the points that are not too near, not too far,
but “just right”. We could call this the Goldilocks problem, but formally
we refer it as the annulus query problem.

Figure 1.7: Goldilocks finds the porridge that is not too cold, not too
hot, but “just right”. ©Award Publications ltd.

Annulus is french and latin for ring and the name comes from the
shape of the valid area in the plane. The exact annulus query is illus-
trated in Figure 1.8. Again, we will be working with an approximate
version:

Definition 1.3 ((c, r, w)-Approximate Annulus Query). For c > 1, r >
0,w > 1. If there exists a point x ∈ S such that r/w ≤ D(x, q) ≤ rw
report some point x′ ∈ S where r/cw ≥ D(x′, q) ≤ crw, otherwise
report nothing.

A natural way to approach this problem is with a two part solution,
one part filtering away points that are too far and the other removing
those that are too near. In Chapter 3 we present a solution like this in
(Rd, `2) where we use locality sensitive hashing(LSH, see Section 1.3.7)
for the first part and the AFN data structure from Chapter 2 for the sec-
ond. Using an LSH with gap ρ, our combined data structure answers
the (c, r, w)-Approximate Annulus Query with constant success prob-
ability in time Õ(dnρ+1/c2

) while using Õ(n2(ρ+1/c2)) additional space.
This result was published in the journal version of the AFN paper [98].
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x
q

r/w

rw

Figure 1.8: The Annulus query around q returns x.

1.2.3 (r, c, ε)-Distance Sensitive Approximate Membership Query (DAMQ)

Given a set S and a query point q a membership query asks if q is in S.
In a famous result from 1970 Burton Bloom showed that the question
can be answered using O(n log 1

ε ) space, where ε is the probability of
returning a false positive [25]. Importantly there are no false negatives (See
Table 1.3). This one-sided error is of great importance in practice: If the
set S we care about is relatively small in comparison to the universe
X and queries are sampled more or less uniformly from X, we expect
that in most cases q /∈ S. Since we never return a false negative, our
only errors can occur on the small fraction of queries where we answer
“yes”.

Answer x ∈ S x /∈ S
“Yes” correct false positive
“No” false negative correct

Table 1.3: Membership query answers and error types.

We can then use a secondary data structure to double checks all pos-
itive answers. Since we will use it rarely, we can place the secondary
structure somewhere slower to access, but where space is cheaper. For
example on disk, as opposed to in memory. Or on a server somewhere,
as opposed to locally. In this way the one-sided error allows us to use
the approximate data structure to speed up most queries, while still
giving exact answers. In a similarity search context we extend member-
ship queries to be distance sensitive. We want a positive answer when
something in S is similar to q, although perhaps not an exact match.



12 Chapter 1. Introduction

Definition 1.4 ((r, c, ε)-Distance Sensitive Approximate Membership
Query). For r > 0, c ≥ 1 and ε ∈ [0, 1]. Given S ⊆ X and q ∈ X.

• If ∃x ∈ S such that D(q, x) ≤ r report yes.

• If ∀x ∈ S we have D(q, x) > cr report no with probability at least
1− ε, or yes with probability at most ε.

There is some prior work [77, 68], but these solutions yield false pos-
itives as well as negatives. In Chapter 4 we present the first non-trivial
solution with one-sided error. This work was co-authored with Mayank
Goswami, Rasmus Pagh and Francesco Silvestri and was published at
SODA in 2017 [62]. It turns out that unlike in the regular membership
query, it is important to specify what the ε error probability is over.

If ε is over the choice of q, the problem seems easier than if it is over
the random choices made in the data structure and valid for all q. In
the first case we call ε the average error, in the latter the point-wise error.
For ({0, 1}d, H) we present lower bounds (Section 4.3) for both cases
as well as almost matching upper bounds for most parameter settings
(Section 4.4). For a reasonable choice of parameters we get a space lower
bound of Ω(n(r/c + log 1

ε )) bits for ε point-wise error.
To construct our upper bounds we represent the points in S with

signatures that we construct to have some special properties. We let
γ(x, y) denote the gap between the signatures of x and y. The value
of the gap depends on the distance between the original two points.
Crucially our construction guarantees that when the original distance is
less than r the gap is always below a given threshold, but often above it
when the original distance is greater cr. We can then answer the query
by comparing the query signature to the collections of signatures from
S. The space bounds follows from analyzing the necessary length of the
signatures.

1.2.4 Fast Nearest Neighbor preserving embeddings

So far we have been trying to circumvent the issues arising from high
dimensionality by designing algorithms that give approximate results.
Another was to achieve this is through dimensionality reduction. Broadly
speaking the desire here is to find embeddings Φ : Rd → Rk with the
property that D(Φx, Φy) ≈ D(x, y) and importantly k� d.

While finding Φ is not in it self a similarity search problem, it is a
way of improving the performance on all approximate similarity search
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problems. With Φ we can move a similarity problem from (Rd, D)
into (Rk, D) and solve it there instead. In a famous result, Johnson
and Lindenstrauss [74] showed a linear embedding from (Rd, `2) with
k = O(

log n
ε2 ), while distorting distances by a factor at most (1 + ε) (See

lemma 5.1).
The first aspect we might hope improve is getting k even smaller,

but it has recently been shown that the original result is optimal [82,
81]. However, Indyk and Naor [73] showed that if we only care about
preserving nearest neighbor distances, we can get significantly smaller k.
Specifically, k can be made to depend not on n but on λs, the doubling
constant of S (See def. 5.3). We call such embeddings nearest neighbor
preserving (See def. 5.1).

Aside from k, an important aspect is of course the time it takes to
apply Φ. We can think of Φ as an k× d matrix, so it takes O(kd) time to
apply it once. In 2009 Ailon and Chazelle [9] showed that the embedding
matrix can be sparse if it is used in combination with some fast distance
preserving operations. If f is the fraction of non-zero entries, this allow
us to use fast matrix multiplication to apply the embedding in time
O(kd f ). They showed a construction that gets f = O(

log n
d ).

In Chapter 5 we show that these two results can be happily married
to yield fast nearest neighbor preserving embeddings:

Theorem 1.1 (Fast Nearest Neighbor Preserving Embeddings). For any
S ⊆ Rd, ε ∈ (0, 1) where |S| = n and δ ∈ (0, 1/2) for some

k = O
(

log (2/ε)

ε2 log (1/δ) log λS

)
there exists a nearest neighbor preserving embedding Φ : Rd → Rk with
parameters (ε, 1− δ) requiring expected

O
(

d log(d) + ε−2 log3 n
)

operations.

The embedding construction is as suggested by [9], but with k
bounded as in [73]. Our contribution is in analysing the requirements
for nearest neighbor preserving embeddings and showing that they can
be fulfilled by this sparse construction. We also offer some slight im-
provement to the constants in f .
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1.2.5 (λ, ϕ)-Set Similarity join

The join is an important basic operation in databases. Typically records
are joined using one or more shared key values. The similarity join is a
variation where we instead join records if they are sufficiently similar:

Definition 1.5 (Similarity Join). Given two sets S and R and a threshold
λ, return the set S ./λ R = {(x, y)|x ∈ S, y ∈ R, D(x, y) ≤ λ}.

We will look at this problem not for sets of points, but for sets of
sets, i.e. Set Similarity Join. To understand this change of setting let us
briefly revisit the embedding of strings into (N2, H) in figure 1.1. If
the ordering of the letters in each string is irrelevant or meaningless in a
given application, the hamming distance seems a poor choice of distance
function. We want D(”ED”, ”DE”) to be 0, not 2. This is captured by
interpreting a string as a set of elements, as illustrated in Figure 1.9.

B E D

Figure 1.9: The sets
{B, E} and {E, D}.

Using the same letter to integer mapping as before, we
think for example of “DE” as the set {3, 4} and S as a set
of such sets. In this setting we think of the dimension d
as the number of different elements, as opposed to using
it for the size of the sets. In the example d is the size of
the alphabet. We have then moved to the set P([d]) and
we switch to using similarity measures (See Section 1.3.2).
The Set Similarity Join originates in databases where we

might use it to perform entity resolution [16, 39, 104]. That is, iden-
tify pairs (x ∈ S, y ∈ R) where x and y correspond to the same entity.
These can then be used to merge data. Another popular use of similar-
ity joins in practice is recommender systems. Here we link two similar,
but different, entities in order to use the preferences of one to make
recommendations to the other.

In Chapter 6 we present a new algorithm, the CPSJoin, that solves
the set similarity join problem with probabilistic bounds on recall, for-
malized as:

Definition 1.6 ((λ, ϕ)-Set Similarity Join). Given two sets of sets S and
R, a threshold λ ∈ (0, 1) and recall probability ϕ ∈ (0, 1). Return L ⊆
S ./λ R such that for every (x, y) ∈ S ./λ R we have Pr[(x, y) ∈ L] ≥ ϕ.

The CPSJoin is named after the Chosen Path algorithm [44] for the
approximate near neighbor problem. We can think of the CPSJoin as an
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adaptive version of the Chosen Path algorithm, tailored to the (λ, ϕ)-
Set Similarity Join problem (See Section 6.4.2 for a full comparison).

The core idea is a randomized divide and conquer strategy. We can
view the algorithm as running in a number of steps. At each step, we
may either

1. solve the problem by brute force, or

2. divide the problem into smaller problems and handle them in sep-
arate steps.

The idea of the Chosen Path algorithm is to perform the division by
selecting a random element from [d]. A new subproblem is then formed
out of all entities containing that element. In this way the probability
that x and y end up in the same subproblem is proportional to |x ∩ y|.
This is repeated enough times to get the desired recall.

We can view this process as forming a tree, at each step branching
into smaller subproblems, until the leaves are eventually brute forced.
The central question then is at what depth to stop branching. Building
on previous techniques would suggest using either a global worst case
depth, k, for all points [44, 59, 95], or an individual kx pr. point depth [7].
We develop an adaptive technique that picks out a point when the ex-
pected number of comparisons to that point stops decreasing. We show
that our adaptive strategy has several benefits. Our main theoretical
contribution is showing that the query time is within a constant factor
of the individually optimal method. The CPSJoin uses time

Õ

∑
x∈S

min
kx

 ∑
y∈S\{x}

(sim(x, y)/λ)kx + (1/λ)kx

 .

It achieves recall ϕ = Ω(ε/ log(n)) and uses O(n log(n)/ε) working
space with high probability. Note that we are trading time against recall
and space.

We also implemented CPSJoin and performed extensive experi-
ments. Our experiments show speed-ups in the 2− 50× range for 90%
recall on a collection of standard benchmark data sets.

1.3 Preliminaries and techniques

In this section we introduce the techniques that will be used throughout
the thesis. The section serves both to acknowledge prior work and to
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highlight new techniques in the context of their priors. Readers familiar
with randomized algorithms and data structures can skip ahead to Sec-
tion 2. We will describe the techniques from a high level perspective for
the purpose of establishing shared intuition and a common language.

1.3.1 Computational Model

When devising new algorithms we will primarily be interested in their
cost in terms of two resources, time and space (i.e. storage). To build
precise arguments about the cost of a given algorithm we will need a
mathematical model for how the algorithm will be carried out. Here
we face a trade-off between the simplicity of the model, the general
applicability and the precision.

While these first two demands are somewhat correlated, it is difficult
to fulfill all three simultaneously. However, our focus is on finding time
and space costs that can be used to compare different algorithms and
give an insight into their relative performance. Hence precision is of less
importance, as long as algorithms are somewhat evenly affected. Unit
cost models are well suited for this task. We will base our model on the
real-RAM model as introduced by Shamos [105]. We could also use the
word-RAM model, but by using full reals we avoid discussing issues
of precision that are not at the core of the algorithms. However we do
not have numerically unstable processes and results should hold in both
models. To avoid unrealistic abuses, say by packing the input set into a
single real, we do not have a modulo operation or integer rounding. We
model the computers memory as consisting of infinitely many indexed
locations Mi, each location holding a real number:

M = {(i, Mi ∈ R)|i ∈N}.

We assume that we can carry out any of the following operations at unit
cost:

• Read or Write any Mi.

• Compare two reals, ≤,<,=,>,≥.

• Arithmetic operations between two reals +,−, ·, /.

• Sample a random variable from a uniform, normal or binomial
distribution.
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The time cost of an algorithm will then be the total number of these
operations performed. When talking about search algorithms we will
often split the time cost into preprocessing- and query time. All opera-
tions that can be carried out without knowledge of the query point(s)
are counted as preprocessing. Query time counts only the remaining
operations. The storage requirement is simply the number of memory
locations accessed. Of course, we will also try to be considerate of other
resources, like how complex something is to implement, but we do not
include these concerns in the model.

We will be using standard O-notation [78] to give bounds in the
model. In short, let g, f : X → R:

• O( f (x)) denotes the set of all g(x) such that there exists positive
constants C and x0 with |g(x)| ≤ C f (x) for all x ≥ x0.

• Ω( f (x)) denotes the set of all g(x) such that there exists positive
constants C and x0 with g(x) ≥ C f (x) for all x ≥ x0.

Although O( f ) is a set, it is standard to use g = O( f ) and “g is O( f )”
to mean g ∈ O( f ). Õ() is used to omit polylog factors.

1.3.2 Distance functions and similarity measures

We will mostly be formalizing “similarity” through the inverse notion
of distance. Given a point in space, similar things will be close, differing
things far away. But we will also sometimes use direct similarity mea-
sures. Table 1.4 contains the distance functions and similarity measures
we will be using throughout. We write D(·, ·) for distance functions, and
sim(·, ·) for similarity measures. This is a little confusing, but done for
historical reasons. Both notions are well established in separate branches
of mathematics.

The distance functions are central in geometry, dating back to the
ancient Greeks. Most of our work will focus on `p norms, in particular
the Euclidean distance `2. For a thorough discussion of the `p norms we
refer to [101].

The similarity measures originated in biology where they where de-
veloped to compare subsets of a bounded set, like [d] or the set of all
flowers. In Chapter 6 we use Jaccard similarity as well as the Braun-
Blanquet variation. These measures range between 0 and 1, with 0 being
no common elements and 1 being duplicate sets.
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Name Input Distance function

Hamming distance x, y ∈ Xd H(x, y) = ∑d
i

{
1 if xi = yi

0 else

Minkowski distance x, y ∈ Xd `p(x, y) =
(

∑d
i |xi − yi|p

)1/p

Euclidian distance x, y ∈ Xd `2(x, y) =
√

∑d
i |xi − yi|2

Jaccard similarity A, B ⊆ X J(A, B) = |A∩B|
|A∪B|

Braun-Blanquet similarity A, B ⊆ X BB(A, B) = A∩B
max(|A|,|B|)

Table 1.4: Distance functions and Similarity measures

The odd space out is the Hamming space. We could define the Ham-
ming similarity as (d− H(x, y))/d, but it is standard in the literature to
use Hamming distance.

A practitioner wondering about the correct embedding for a concrete
application might use the notion of “opposite” as a start. It is always
easy to define equal, but we can only define opposite in a bounded
space. If we are in an unbounded space, say (Rd, `2), no matter where
we would put “the opposite” of a point, there is always something a
little further away. If on the other hand it is easy to identify two things
as completely different, a bounded space is probably the right choice.

1.3.3 Notation

An overview of the notation used for sets is available in Table 1.1. Ta-
ble 1.2 contains the reserved symbols we use when solving similarity
search problems. In Table 1.4 we list the distance functions and similar-
ity measures used. For random variables we write X ∼ Y when X and
Y have the same distribution (See Section 1.3.5).

We frequently work with balls, so some special notation for these is
helpful. The d dimensional ball is defined in (Xd, D) as

Bd(x, r) = {p ∈ Xd|D(p.x) ≤ r}.
If we are arguing about the any ball of a given radius we write Bd(r).

We will omit the d subscript when it is clear from the context.
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1.3.4 Divide and Conquer

Much of the successful early work in similarity search is based on divide
and conquer designs [21]. The main idea here is to divide S ⊆ X into
halves along each dimension and recursively search through the parts
until the nearest neighbor is found. This leads to powerful data struc-
tures in low-dimensional spaces, but ultimately also to the amount of
work growing exponentially in d. The kd-tree is a well known data struc-
ture based on this design. For the NN problem it promises O (log n)
query time on random data, O (n log n) preprocessing time and O (n)
storage [20, 58], but for high dimensions it converges toward linear
query time.

In Chapter 6 the paradigm is used to recursively break problems into
smaller sub-problems that are then individually handled. Of course the
challenge then is to ensure that all relevant answers to the larger prob-
lem emerge as answers in one of the sub problems. For exact algorithms,
like the classical closest pair in two dimensions [67] problem, this is han-
dled by checking all possible ways a solution could have been eliminated
when generating sub problems. In Chapter 6 we handle it by randomly
generating enough sub-problems to give probabilistic guarantees that
all close pairs are checked.

1.3.5 Randomization and Concentration

Algorithms that make random choices, or Randomized algorithms, are at
the heart of modern similarity search. Randomization was already im-
portant in early work to speed up construction of the d dimensional
voronoi diagram [45], and it is essential in the later LSH based tech-
niques. In order to analyse such algorithms we will borrow many ideas
and results from the field of probability theory. We only cover a few
of the most used tools here. See for example [89, 90] or [54] for an
overview.

If our algorithm is to take a random choice it must have access to a
source of randomness. In reality this will normally be simulated with
psudo-random numbers generated by another algorithm, but we will
assume that we can access some random process to generate a random
event. Let the sample space, Ω, be the set of all possible outcomes of a
random event.
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Definition 1.7. A random variable, X, is a real valued function on the
sample space X : Ω → R. A discrete random variable X takes on only a
finite or countably infinite number of values.

We will say that random variable X has cumulative distribution func-
tion F if

F(x) = Pr[X ≤ x].

When F(x) has the form
∫ x
−∞ f (t)dt, or ∑x′≤x f (x′) for discrete X,

we say that X has probability density function f (x). When two random
variables X, Y have the same cumultative distribution function, i.e.

∀x Pr[X ≤ x] = Pr[Y ≤ x],

it implies that
∀x Pr[X = x] = Pr[Y = x], (1.1)

and we say that X and Y have the same distribution. We write this
as X ∼ Y. We avoid using eq. 1.1 directly for this, because if X is
not discrete Pr[X = x] = 0 for all x. For some distributions that we
encounter often we use special symbols:

Definition 1.8 (The normal distribution). We write

X ∼ N (µ, σ2).

When X follows the normal distribution with mean µ ∈ R and variance
σ2 ∈ R, defined by probability density function:

f (x) =
1√

2πσ2
e
(x−µ)2

2σ2 .

We refer to N (0, 1) as the standard normal distribution. The normal
distribution is also called the Gaussian distribution and we sometimes
refer to random variables as “Gaussians” if they follow the normal dis-
tribution. When building randomized algorithms we often return to the
Gaussian distribution. One reason is that it is 2−stable [118]:

We call a distribution D over R p−stable where p ≥ 0, if for any
real numbers v1, . . . , vd and for X, X1, X2, . . . , Xd ∼ D:

d

∑
i

viXi ∼
(

d

∑
i
|vi|p

)1/p

X

So for X, X1, X2, . . . , Xd ∼ N (0, 1) and some vector x ∈ Rd we have
∑ Xixi ∼ ‖x‖2X ∼ Y where Y ∼ N (0, ‖x‖2

2).
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Definition 1.9 (The binomial distribution). We write

X ∼ B(n, p).

When X follows the binomial distribution with n ∈N trials and success
probability p ∈ [0, 1]. The probability density function is

f (x) =
(

n
x

)
px(1− p)n−x.

The binomial distribution can be understood as counting the num-
ber of heads in a series of n coin flips, if the coin shows head with
probability p. A single flip of the coin is referred to as a Bernoulli trial.
Note that X is then a discrete random variable, the only outcomes are
the integers from 0 to n. This distribution arises often when working in
Hamming space due to the binary nature of the space.

A very powerful tool that we use frequently to analyse random pro-
cesses is Markov’s inequality:

Theorem 1.2 (Markov’s inequality). Let X be a non-negative random vari-
able. Then, for all a > 0,

Pr[X ≥ a] ≤ E[X]

a
.

Using Markov’s inequlity directly yields useful, but pretty loose
bounds. If we have a good grasp of the moment generating function
of X, M(t) = E[etX], we can get much stronger bounds out of Markov’s
inequality. The idea is to analyse eX rather than X. Since eX ≥ 0 even
if X < 0 this also expands the range of variables we can use. We re-
fer to bounds derived this way as “Chernoff bounds”. For example for
X ∼ B(n, 1/2) and ε > 0 we can use Markov’s inequality directly to get

Pr[X ≥ (1 + ε)
n
2
] ≤ 1

1 + ε
.

While a Chernoff bound yields exponentially stronger bounds and
captures the increasing concentration in n,

Pr[X ≥ (1 + ε)
n
2
] ≤ e−ε2n/2 .

Even if we fix n, this is a lot better as illustrated in Figure 1.10.
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Figure 1.10: Illustration of Markov and Chernoff type bounds.

1.3.6 Hashing

We use hashing as an umbrella term for applying functions that map
some universe U into a limited range of M integers.

Often we want functions that spread a large universe evenly over the
output range. This idea was formalized by Carter and Wegman in the
notions of universal hashing [33] and k-independent hashing [112]. We call
a family of hash functions H universal if for a randomly chosen h ∈ H
and distinct x1, x2 ∈ U and randomly chosen y1, y2 ∈ [M]:

Pr[h(x1) = y1 ∧ h(x2) = y2] ≤
1

M2

And we say that the family is k-independent if for any keys
(x1, · · · , xk) ∈ U k and any (y1, · · · , yk) ∈ [M]k:

Pr[h(x1) = y1 ∧ · · · ∧ h(xk) = yk] = M−k

So for k ≥ 2, k-independent families are strongly universal.
Another useful property was introduced by Broder et. al. [28, 31]:
Let Sn be the set of all permutations of [n]. We say that a family of

permutations F ⊆ Sn is min-wise independent if for any X ⊆ [n] and
any x ∈ X, when π is chosen at random from F we have

Pr[min(π(X)) = π(x)] =
1
|X| .

That is, every element of X is equally likely to permute to the small-
est value. We call H a familiy of MinHash functions if for a random
h ∈ H, h(X) = min(π(X)) where π is a random permutation from a
min-wise independent family of permutations.

MinHash functions are very useful in Set Similarity because
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Pr[h(x) = h(y)] =
|x ∩ y|
|x ∪ y| = J(x, y) .

Let Xi = 1 if hi(x) = hi(y) and 0 otherwise. A Chernoff bound tells
us that if X = 1

t ∑t
i Xi,

Pr[|X− J(x, y)| ≥
√

3 ln t
t

J(x, y)] ≤ 2e−J(x,y) ln t =
2

tJ(x,y)
. (1.2)

So we can get precise estimates of the Jaccard similarity from a small
number of hash functions.

Of course the number of permutations of [n] is n! so in practice we
allow F ⊆ Sn to be ε−min-wise independent:

Pr[min(π(X)) = π(x)] ∈ 1± ε

|X|
In practice we also want hash functions that are fast to evaluate and

easy to implement. Zobrist hashing, or simple tabulation hashing, fits this
description. It is ε−min-wise independent with ε shrinking polynomi-
ally in |X| [100], 3−independent and fast in practice [108]. Tabulation
hashing works by splitting keys x = (x0, · · · , xc−1) into c parts. Each
part is treated individually by mapping it to [M], say with a table of
random keysto, · · · , tv−1 : U → [M]. Finally h : U c → [M] is computed
by:

h(x) = ⊕i∈[c]ti(xi)

Where ⊕ denotes the bit-wise XOR operation.

1.3.7 Locality Sensitive Hashing

Locality Sensitive Hashing(LSH) is the current state of the art for solving
the ANN problem(Definition 1.1). The technique was first introduced by
Indyk, Gionis and Motwani [72, 59] with an implementation that is still
the best know for Hamming space. Since then it has been a subject of
intense research. See [11] for an overview. The basic idea is to partition
the input data using a hash function, H, that is sensitive to the metric
space location of the input. This means that the collision probability is
larger for inputs close to each other than for inputs that are far apart.
This requirement is normally formalized as:

Pr [H(u) = H(v)]

{
≥ P1 when D(u, v) ≤ r
≤ P2 when D(u, v) ≥ cr

(1.3)
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Figure 1.12: Ideal vs. achievable LSH function.

where P1 > P2. So the of points in S colliding with q under H are likely
near neighbors. The key to success for this method is in achieving a large
gap between P1 and P2, quantified as ρ = − ln P1

− ln P2
(See Figure 1.12). Ideally,

P2 would be 0, for example by the hash function returning the cell of
the voronoi diagram associated with a point. But that would trap the
function in the curse of dimensionality, either taking up too much space
or time. So instead we use several functions that each return imperfect
partitioning, as illustrated in Figure 1.11, but are fast to evaluate.

Figure 1.11: A non-perfect par-
titioning of points in R2

Using a hash function with these properties
the (c, r)-ANN problem can be solved using
n1+ρ+o(1) extra space with dnρ+o(1) query time
[65]. Recently lower bounds have been published
on ρ for the `1 [65] and `2 [92] norm, and a re-
sult for `2 with ρ = 1/c2 has been know for a
some years [12]. In Chapter 3 we explore the
idea of storing the contents of the LSH buckets
in a particular order. In our case we use pro-
jection values onto a random line as approxima-
tion of nearness to the convex hull. However the
technique could be expanded to other ways of
prioritizing points in scenarios where some sub-
set of the nearest neighbors are of more interest
than others.



Chapter 2

Furthest Neighbor

Much recent work has been devoted to approximate nearest neighbor
queries. Motivated by applications in recommender systems, we con-
sider approximate furthest neighbor (AFN) queries and present a simple,
fast, and highly practical data structure for answering AFN queries in
high-dimensional Euclidean space. The method builds on the technique
of Indyk (SODA 2003), storing random projections to provide sublin-
ear query time for AFN. However, we introduce a different query al-
gorithm, improving on Indyk’s approximation factor and reducing the
running time by a logarithmic factor. We also present a variation based
on a query-independent ordering of the database points; while this does
not have the provable approximation factor of the query-dependent data
structure, it offers significant improvement in time and space complex-
ity. We give a theoretical analysis, and experimental results.

2.1 Introduction

The furthest neighbor query is an important primitive in computational
geometry. For example it can been used for computing the minimum
spanning tree or the diameter of a set of points [5, 53]. It is also
used in recommender systems to create more diverse recommenda-
tions [102, 103]. In this Chapter we show theoretical and experimental
results for the c-approximate furthest neighbor problem (c-AFN, Defini-
tion 1.2) in (Rd, `2). We present a randomized solution with a bounded
probability of not returning a c-AFN. The success probability can be
made arbitrarily close to 1 by repetition.
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x

x′
q

||x−q||
c

Figure 2.1: Returning a (c)-AFN.

We describe and analyze our data struc-
tures in Section 2.2. We propose two
approaches, both based on random pro-
jections but differing in what candidate
points are considered at query time. In
the main query-dependent version the can-
didates will vary depending on the given
query, while in the query-independent ver-
sion the candidates will be a fixed set.

The query-dependent data structure is
presented in Section 2.2.1. It returns the c-
approximate furthest neighbor, for any c >

1, with probability at least 0.72. When the number of dimensions is
O(log n), our result requires Õ(n1/c2

) time per query and Õ(n2/c2
) total

space, where n denotes the input size. Theorem 2.3 gives bounds in the
general case. This data structure is closely similar to one proposed by
Indyk [70], but we use a different approach for the query algorithm.

The query-independent data structure is presented in Section 2.2.2.
When the approximation factor is a constant strictly between 1 and

√
2,

this approach requires 2O(d) query time and space. This approach is
significantly faster than the query dependent approach when the di-
mensionality is small.

The space requirements of our data structures are quite high: the
query-independent data structure requires space exponential in the di-
mension, while the query-dependent one requires more than linear
space when c <

√
2. However, we claim that this bound cannot be

significantly improved. In Section 2.2.3 we show that any data structure
that solves the c-AFN by storing a suitable subset of the input points
must store at least min{n, 2Ω(d)} − 1 data points when c <

√
2.

Section 2.3 describes experiments on our data structure, and some
modified versions, on real and randomly-generated data sets. In prac-
tice, we can achieve approximation factors significantly below the

√
2

theoretical result, even with the query-independent version of the algo-
rithm. We can also achieve good approximation in practice with sig-
nificantly fewer projections and points examined than the worst-case
bounds suggested by the theory. Our techniques are much simpler to
implement than existing methods for

√
2-AFN, which generally require

convex programming [46, 88]. Our techniques can also be extended to
general metric spaces.
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2.1.1 Related work

Exact furthest neighbor In two dimensions the furthest neighbor prob-
lem can be solved in linear space and logarithmic query time using point
location in a furthest point Voronoi diagram (see, for example, de Berg et
al. [22]). However, the space usage of Voronoi diagrams grows exponen-
tially with the number of dimensions, making this approach impractical
in high dimensions. More generally, an efficient data structure for the
exact furthest neighbor problem in high dimension would lead to sur-
prising algorithms for satisfiability [113], so barring a breakthrough in
satisfiability algorithms we must assume that such data structures are
not feasible. Further evidence of the difficulty of exact furthest neighbor
is the following reduction: Given a set S ⊆ {−1, 1}d and a query vec-
tor q ∈ {−1, 1}d, a furthest neighbor (in Euclidean space) from −q is a
vector in S of minimum Hamming distance to q. That is, exact furthest
neighbor is at least as hard as exact nearest neighbor in d-dimensional
Hamming space, which seems to be very hard to do in n1−Ω(1) without
using exponential space [113, 8].

Approximate furthest neighbor Agarwal et al. [5] proposes an al-
gorithm for computing the c-AFN for all points in a set S in time
O
(

n/(c− 1)(d−1)/2
)

where n = |S| and 1 < c < 2. Bespamyatnikh [24]
gives a dynamic data structure for c-AFN. This data structure relies on
fair split trees and requires O

(
1/(c− 1)d−1) time per query and O (dn)

space, with 1 < c < 2. The query times of both results exhibit an expo-
nential dependency on the dimension. Indyk [70] proposes the first ap-
proach avoiding this exponential dependency, by means of multiple ran-
dom projections of the data and query points to one dimension. More
precisely, Indyk shows how to solve a fixed radius version of the problem
where given a parameter r the task is to return a point at distance at least
r/c given that there exist one or more points at distance at least r. Then,
he gives a solution to the furthest neighbor problem with approximation
factor c + δ, where δ > 0 is a sufficiently small constant, by reducing it
to queries on many copies of that data structure. The overall result is
space Õ(dn1+1/c2

) and query time Õ(dn1/c2
), which improved the pre-

vious lower bound when d = Ω (log n). The data structure presented in
this chapter shows that the same basic method, multiple random projec-
tions to one dimension, can be used for solving c-AFN directly, avoiding
the intermediate data structures for the fixed radius version. Our result
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is then a simpler data structure that works for all radii and, being inter-
ested in static queries, we are able to reduce the space to Õ(dn2/c2

).

Methods based on an enclosing ball Goel et al. [60] show that a
√

2-
approximate furthest neighbor can always be found on the surface of
the minimum enclosing ball of S. More specifically, there is a set S∗

of at most d + 1 points from S whose minimum enclosing ball con-
tains all of S, and returning the furthest point in S∗ always gives a

√
2-

approximation to the furthest neighbor in S. (See also Appendix A.2).
This method is query independent in the sense that it examines the same
set of points for every query. Conversely, Goel et al. [60] show that for a
random data set consisting of n (almost) orthonormal vectors, finding a
c-approximate furthest neighbor for a constant c <

√
2 gives the ability

to find an O(1)-approximate near neighbor. Since it is not known how
to do that in time no(1) it is reasonable to aim for query times of the form
n f (c) for approximation c <

√
2. We also give a lower bound supporting

this view in Section 2.2.3.

Applications in recommender systems Several papers on recom-
mender systems have investigated the use of furthest neighbor
search [102, 103]. The aim there was to use furthest neighbor search
to create more diverse recommendations. However, these papers do not
address performance issues related to furthest neighbor search, which
are the main focus of our efforts. The data structures presented in this
chapter are intended to improve performance in recommender systems
relying on furthest neighbor queries. Other related works on recom-
mender systems include those of Abbar et al. [1] and Indyk et al. [71],
which use core-set techniques to return a small set of recommendations
no two of which are too close. In turn, core-set techniques also underpin
works on approximating the minimum enclosing ball [18, 79].

2.1.2 Notation

In this chapter we will use arg maxm
S f (x) for the set of m elements from

S that have the largest values of f (x), breaking ties arbitrarily.
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2.2 Algorithms and analysis

2.2.1 Furthest neighbor with query-dependent candidates

Our data structure works by choosing a random line and storing the
order of the data points along it. Two points far apart on the line are
likely far apart in the original space. So given a query we can the points
furthest from the query on the projection line, and take those as candi-
dates for furthest point in the original space. We build several such data
structures and query them in parallel, merging the results.

Given a set S ⊆ Rd of size n (the input data), let ` = 2n1/c2
(the

number of random lines) and m = 1 + e2` logc2/2−1/3 n (the number of
candidates to be examined at query time), where c > 1 is the desired
approximation factor. We pick ` random vectors a1, . . . , a` ∈ Rd with
each entry of ai coming from the standard normal distribution N(0, 1).

For any 1 ≤ i ≤ `, we let Si = arg maxm
x∈S ai · x and store the elements

of Si in sorted order according to the value ai · x. Our data structure for
c-AFN consists of ` subsets S1, . . . , S` ⊆ S, each of size m. Since these
subsets come from independent random projections, they will not nec-
essarily be disjoint in general; but in high dimensions, they are unlikely
to overlap very much. At query time, the algorithm searches for the
furthest point from the query q among the m points in S1, . . . , S` that
maximize aix − aiq, where x is a point of Si and ai the random vector
used for constructing Si. The pseudocode is given in Algorithm 1. We
observe that although the data structure is essentially that of Indyk [70],
our technique differs in the query procedure.

Note that early termination is possible if r is known at query time.

Correctness and analysis The algorithm examines distances to a set of
m points with maximal projection values, we will call the set Sq:

Sq = arg
m

max
x∈∪Si

ai · (x− q), |Sq| = m.

We choose the name Sq to emphasize that the set changes based on
q. Our algorithm succeeds if and only if Sq contains a c-approximate
furthest neighbor. We now prove that this happens with constant prob-
ability.

We make use of the following standard lemmas that can be found,
for example, in the work of Datar et al. [51] and Karger, Motwani, and
Sudan [76].
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Algorithm 1: Query-dependent approximate furthest neighbor
Input: ` orderings of the input set S. Each S1≤i≤` referencing S in

decreasing order of ai · x. A query point q.
1 P← An empty priority queue of (point, integer) pairs;
2 Q←An empty array of reals;
3 I ←An empty array of iterators;
4 for i = 1 to ` do
5 Qi ← ai · q;
6 Ii ←An iterator into Si;
7 Retrieve x from Ii and advance Ii;
8 Insert (x, i) into P with priority ai · x−Qi;

9 rval← ⊥;
10 for j = 1 to m do
11 (x, i)← Highest priority element from P;
12 if rval = ⊥ or x is further than rval from q then
13 rval← x

14 Retrieve x from Ii and advance Ii;
15 Insert (x, i) into P with priority ai · x−Qi;

16 return rval

Lemma 2.1 (See Section 3.2 of Datar et al. [51]). For every choice of vectors
x, y ∈ Rd:

ai · (x− y)
‖x− y‖2

∼ N(0, 1).

Lemma 2.2 (See Lemma 7.4 in Karger, Motwani, and Sudan [76]). For
every t > 0, if X ∼ N(0, 1) then

1√
2π
·
(

1
t
− 1

t3

)
· e−t2/2 ≤ Pr[X ≥ t] ≤ 1√

2π
· 1

t
· e−t2/2

The next lemma follows, as suggested by Indyk [70, Claims 2-3].

Lemma 2.3. Let p be a furthest neighbor from the query q with r = ‖p− q‖2,
and let p′ be a point such that ‖p′− q‖2 < r/c. Let ∆ = rt/c with t satisfying
the equation et2/2tc2

= n/(2π)c2/2 (that is, t = O
(√

log n
)
). Then, for a
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sufficiently large n, we have

Pr
a

[
a · (p′ − q) ≥ ∆

]
≤ logc2/2−1/3 n

n

Pr
a
[a · (p− q) ≥ ∆] ≥ (1− o(1))

1
n1/c2 .

Proof. Let X ∼ N (0, 1). By Lemma 2.1 and the right part of Lemma 2.2,
we have for a point p′ that

Pr
a

[
a · (p′ − q) ≥ ∆

]
= Pr

a

[
X ≥ ∆/‖p′ − q‖2

]
≤ Pr

a
[X ≥ ∆c/r] = Pr

a
[X ≥ t]

≤ 1√
2π

e−t2/2

t
≤
(

t
√

2π
)c2−1 1

n
≤ logc2/2−1/3 n

n
.

The last step follows because et2/2tc2
= n/(2π)c2/2 implies that t =

O
(√

log n
)
, and holds for a sufficiently large n. Similarly, by Lemma 2.1

and the left part of Lemma 2.2, we have for a furthest neighbor p that

Pr
a
[a · (p− q) ≥ ∆] = Pr

a
[X ≥ ∆/‖p− q‖2] = Pr

a
[X ≥ ∆/r] = Pr

a
[X ≥ t/c]

≥ 1√
2π

(
c
t
−
( c

t

)3
)

e−t2/(2c2) ≥ (1− o(1))
1

n1/c2 .

Theorem 2.1. The data structure when queried by Algorithm 1 returns a c-
AFN of a given query with probability 1− 2/e2 > 0.72 in

O
(

n1/c2
logc2/2−1/3 n(d + log n)

)
time per query. The data structure requires O(n1+1/c2

(d + log n)) preprocess-
ing time and total space

O
(

min
{

dn2/c2
logc2/2−1/3 n, dn + n2/c2

logc2/2−1/3 n
})

.

Proof. The space required by the data structure is the space required for
storing the ` sets Si. If for each set Si we store the m ≤ n points and the
projection values, then O (`md) memory locations are required. On the
other hand, if pointers to the input points are stored, then the total re-
quired space is O (`m + nd). The representations are equivalent, and the
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best one depends on the value of n and d. The claim on space require-
ment follows. The preproceesing time is dominated by the computation
of the n` projection values and by the sorting for computing the sets
Si. Finally, the query time is dominated by the at most 2m insertion or
deletion operations on the priority queue and the md cost of searching
for the furthest neighbor, O (m(log `+ d)).

We now upper bound the success probability. Again let p denote a
furthest neighbor from q and r = ‖p− q‖2. Let p′ be a point such that
‖p′ − q‖2 < r/c, and ∆ = rt/c with t such that et2/2tc2

= n/(2π)c2/2.
The query succeeds if

1. ai(p− q) ≥ ∆ for at least one projection vector ai, and

2. the (multi)set Ŝ = {p′|∃i : ai(p′− q) ≥ ∆, ‖p′− q‖2 < r/c} contains
at most m− 1 points.

If both (1) and (2) hold, then the size m set of candidates Sq examined by
the algorithm must contain the furthest neighbor p. Note that we do not
consider points at distance larger than r/c but smaller than r: they are
c-approximate furthest neighbors of q and can only increase the success
probability of our data structure.

By Lemma 2.3, (1) holds with probability 1/n1/c2
. Since there are

` = 2n1/c2
independent projections, this event fails to happen with

probability at most (1 − 1/n1/c2
)2n1/c2

≤ 1/e2. For a point p′ at dis-
tance at most r/c from q, the probability that ai(p′ − q) ≥ ∆ is less than
(logc2/2−1/3 n)/n by Lemma 2.3. Since there are ` projections of n points,
the expected number of such points is ` logc2/2−1/3 n. Then, we have that
|Ŝ| is greater than m− 1 with probability at most 1/e2 by the Markov in-
equality. Note that a Chernoff bound cannot be used since there exists a
dependency among the projections onto the same random vector ai. By
a union bound, we can therefore conclude that the algorithm succeeds
with probability at least 1− 2/e2 ≥ 0.72.

2.2.2 Furthest neighbor with query-independent candidates

Suppose instead of determining the candidates depending on the query
point by means of a priority queue, we choose a fixed candidate set to
be used for every query. The

√
2-approximation the minimum enclosing

sphere is one example of such a query-independent algorithm. In this
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section we consider a query-independent variation of our projection-
based algorithm.

During preprocessing, we choose ` unit vectors y1, y2, . . . , y` inde-
pendently and uniformly at random over the sphere of unit vectors in
d dimensions. We project the n data points in S onto each of these unit
vectors and choose the extreme data point in each projection; that is,{

arg max
x∈S

x · yi

∣∣∣∣ i ∈ [`]

}
.

The data structure stores the set of all data points so chosen; there
are at most ` of them, independent of n. At query time, we check the
query point q against all the points we stored, and return the furthest
one.

To prove a bound on the approximation, we will use the following
result of Böröczky and Wintsche [27, Corollary 1.2]. Note that their
notation differs from ours in that they use d for the dimensionality of
the surface of the sphere, hence one less than the dimensionality of the
vectors, and c for the constant, conflicting with our c for approximation
factor. We state the result here in terms of our own variable names.

Lemma 2.4 (See Corollary 1.2 in Böröczky and Wintsche [27]). For any
angle ϕ with 0 < ϕ < arccos 1/

√
d, in d-dimensional Euclidean space, there

exists a set V of at most Cd(ϕ) unit vectors such that for every unit vector u,
there exists some v ∈ V with the angle between u and v at most ϕ, and

|V| ≤ Cd(ϕ) = γ cos ϕ · 1
sind+1 ϕ

· (d + 1)
3
2 ln(1 + (d + 1) cos2 ϕ) , (2.1)

where γ is a universal constant.

Let ϕc = 1
2 arccos 1

c ; that is half the angle between two unit vectors
whose dot product is 1/c, as shown in Figure 2.2. Then by choosing
` = O(Cd(ϕc) · log Cd(ϕc)) unit vectors uniformly at random, we will
argue that with high probability we choose a set of unit vectors such
that every unit vector has dot product at least 1/c with at least one of
them. Then the data structure achieves c-approximation on all queries.

Theorem 2.2. With ` = O( f (c)d) for some function f of c and any c such
that 1 < c < 2, with high probability over the choice of the projection vectors,
the data structure returns a d-dimensional c-approximate furthest neighbor on
every query.
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Figure 2.2: Choosing ϕc.

Proof. Let ϕc = 1
2 arccos 1

c . Then, since 1
c is between 1

2 and 1, we can
apply the usual half-angle formulas as follows:

sin ϕc = sin
1
2

arccos
1
c
=

√
1− cos arccos 1/c√

2
=

√
1− 1/c√

2

cos ϕc = cos
1
2

arccos
1
c
=

√
1 + cos arccos 1/c√

2
=

√
1 + 1/c√

2
.

Substituting into (2.1) from Lemma 2.4 gives

Cd(ϕc) = γ
2d/2
√

1 + 1/c
(1− 1/c)(d+1)/2

(d + 1)3/2 ln
(

1 + (d + 1)
1 + 1/c

2

)
= O

((
2

1− 1/c

)(d+1)/2

d3/2 log d

)
.

Let V be the set of Cd(ϕc) unit vectors from Lemma 2.4; every unit
vector on the sphere is within angle at most ϕc from one of them. The
vectors in V are the centres of a set of spherical caps that cover the
sphere.

Since the caps are all of equal size and they cover the sphere, there
is probability at least 1/Cd(ϕc) that a unit vector chosen uniformly
at random will be inside each cap. Let ` = 2Cd(ϕc) ln Cd(ϕc). This
` = O( f (c)d). Then for each of the caps, the probability none of the pro-
jection vectors yi is within that cap is (1− 1/Cd(ϕc))`, which approaches
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exp(−2 ln Cd(ϕc)) = (Cd(ϕc))−2. By a union bound, the probability that
every cap is hit is at least 1− 1/Cd(ϕc). Suppose this occurs.

Then for any query, the vector between the query and the true fur-
thest neighbor will have angle at most ϕc with some vector in V, and
that vector will have angle at most ϕc with some projection vector used
in building the data structure. Figure 2.2 illustrates these steps: if Q is
the query and P is the true furthest neighbor, a projection onto the unit
vector in the direction from Q to P would give a perfect approximation.
The sphere covering guarantees the existence of a unit vector S within
an angle ϕc of this perfect projection; and then we have high probability
of at least one of the random projections also being within an angle ϕc
of S. If that random projection returns some candidate other than the
true furthest neighbor, the worst case is if it returns the point labelled
R, which is still a c-approximation. We have such approximations for
all queries simultaneously with high probability over the choice of the `
projection vectors.

Note that we could also achieve c-approximation deterministically,
with somewhat fewer projection vectors, by applying Lemma 2.4 di-
rectly with ϕc = arccos 1/c and using the centres of the covering caps as
the projection vectors instead of choosing them randomly. That would
require implementing an explicit construction of the covering, however.
Böröczky and Wintsche [27] argue that their result is optimal to within
a factor O(log d), so not much asymptotic improvement is possible.

2.2.3 A lower bound on the approximation factor

In this section, we show that a data structure aiming at an approxima-
tion factor less than

√
2 must use space min{n, 2Ω(d)} − 1 on worst-case

data. The lower bound holds for those data structures that compute the
approximate furthest neighbor by storing a suitable subset of the input
points.

Theorem 2.3. Consider any data structure D that computes the c-AFN of an
n-point input set S ⊆ Rd by storing a subset of the data set. If c =

√
2(1− ε)

with ε ∈ (0, 1), then the algorithm must store at least min{n, 2Ω(ε2d)} − 1
points.

Proof. Suppose there exists a set S′ of size r = 2Ω(ε′2d) such that for
any x ∈ S′ we have (1− ε′) ≤ ‖x‖2

2 ≤ (1 + ε′) and x · y ≤ 2ε′, with
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ε′ ∈ (0, 1). We will later prove that such a set exists. We now prove by
contradiction that any data structure requiring less than min{n, r} − 1
input points cannot return a

√
2(1− ε)-approximation.

Assume n ≤ r. Consider the input set S consisting of n arbitrary
points of S′. Let the data structure, D ⊂ S, be any n− 1 of these points.
Set the query q to −x, where x ∈ S \D. The furthest neighbor is x and it
is at distance ‖x− (−x)‖2 ≥ 2

√
1− ε′. On the other hand, for any point

y in D, we get

‖y− (−x)‖2 =
√
‖x‖2

2 + ‖y‖2
2 + 2x · y ≤

√
2(1 + ε′) + 4ε′.

Therefore, the point returned by the data structure cannot be better than
a c′ approximation with

c′ =
‖x− (−x)‖2

‖y− (−x)‖2
≥
√

2

√
1− ε′

1 + 3ε′
. (2.2)

The claim follows by setting ε′ = (2ε− ε2)/(1 + 3(1− ε)2).
Assume now that n > r. Without loss of generality, let n be a multiple

of r. Consider as an input the n/r copies of each vector in S′, each copy
expanded by a factor i for any i ∈ [n/r]; specifically, let S = {ix|x ∈
S′, i ∈ [n/r]}. Let D be any r − 1 points from S. Then there exists
a point x ∈ S′ such that for every i ∈ [1, n/r], ix is not in the data
structure. Consider the query q = −hx where h = n/r. The furthest
neighbor of q in S is −q and it has distance ‖q− (−q)‖2 ≥ 2h

√
1− ε′.

On the other hand, for every point y in the data structure, we get

‖y− (−hx)‖2 =
√

h2‖x‖2
2 + ‖y‖2

2 + 2hx · y ≤
√

2h2(1 + ε′) + 4h2ε′.

We then get the same approximation factor c′ given in equation 2.2, and
the claim follows.

The existence of the set S′ of size r follows from the Johnson-
Lindenstrauss lemma [87]. Specifically, consider an orthornormal base
x1, . . . xr of Rr. Since d = Ω

(
log r/ε′2

)
, by the Johnson-Lindenstrauss

lemma there exists a linear map f (·) such that (1 − ε′)‖xi − xj‖2
2 ≤

‖ f (xi)− f (xj)‖2
2 ≤ (1 + ε)‖xi − xj‖2

2 and (1− ε′) ≤ ‖ f (xi)‖2
2 ≤ (1 + ε′)

for any i, j. We also have that f (xi) · f (xj) = (‖ f (xi)‖2
2 + ‖ f (xj)‖2

2 −
‖ f (xi)− f (xj)‖2

2)/2, and hence −2ε ≤ f (xi) · f (xj) ≤ 2ε. It then suffices
to set S′ to { f (x1), . . . , f (xr)}.
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The lower bound translates into the number of points that must be
read by each query. However, this does not apply for query dependent
data structures.

2.3 Experiments

We implemented several variations of furthest neighbor query in both
the C and F# programming languages. This code is available online1.
Our C implementation is structured as an alternate index type for the
SISAP C library [55], returning the furthest neighbor instead of the near-
est.

We selected five databases for experimentation: the “nasa” and “col-
ors” vector databases from the SISAP library; two randomly generated
databases of 105 10-dimensional vectors each, one using a multidimen-
sional normal distribution and one uniform on the unit cube; and the
MovieLens 20M dataset [66]. The 10-dimensional random distributions
were intended to represent realistic data, but their intrinsic dimension-
ality as measured by the ρ statistic of Chávez and Navarro [40] is signifi-
cantly higher than what we would expect to see in real-life applications.

For each database and each choice of ` from 1 to 30 and m from 1
to 4`, we made 1000 approximate furthest neighbor queries. To pro-
vide a representative sample over the randomization of both the projec-
tion vectors and the queries, we used 100 different seeds for generation
of the projection vectors, and did 10 queries (each uniformly selected
from the database points) with each seed. We computed the approxima-
tion achieved, compared to the true furthest neighbor found by brute
force, for every query. The resulting distributions are summarized in
Figures 2.3–2.7.

We also ran some experiments on higher-dimensional random vector
databases (with 30 and 100 dimensions, in particular) and saw approxi-
mation factors very close to those achieved for 10 dimensions.

` vs. m tradeoff The two parameters ` and m both improve the approx-
imation as they increase, and they each have a cost in the time and space
bounds. The best tradeoff is not clear from the analysis. We chose ` = m
as a typical value, but we also collected data on many other parameter
choices.

1https://github.com/johanvts/FN-Implementations
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Figure 2.3: Experimental results for 10-dimensional uniform distribution
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Figure 2.4: Experimental results for 10-dimensional normal distribution
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Figure 2.5: Experimental results for SISAP nasa database
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Figure 2.6: Experimental results for SISAP colors database
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Figure 2.7: Experimental results for MovieLens 20M database
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Algorithm 2: Query-independent approximate furthest neighbor
Input: The input set S sorted by maxi∈1...` ai · x. A query point q.

1 rval← ⊥;
2 for x ∈ The top m elements of S do
3 if rval = ⊥ or x is further than rval from q then
4 rval← x

5 return rval

Figure 2.8 offers some insight into the tradeoff: since the cost of
doing a query is roughly proportional to both ` and m, we chose a fixed
value for their product, ` ·m = 48, and plotted the approximation results
in relation to m given that, for the database of normally distributed
vectors in 10 dimensions. As the figure shows, the approximation factor
does not change much with the tradeoff between ` and m.

Query-independent ordering The furthest-neighbor algorithm de-
scribed in Section 2.2.1 examines candidates for the furthest neighbor
in a query dependent order. In order to compute the order for arbitrary
queries, we must store m point IDs for each of the ` projections, and use
a priority queue data structure during query, incurring some costs in
both time and space. It seems intuitively reasonable that the search will
usually examine points in a very similar order regardless of the query:
first those that are outliers, on or near the convex hull of the database,
and then working its way inward.

We implemented a modified version of the algorithm in which the
index stores a single ordering of the points. Given a set S ⊆ Rd of size
n, for each point x ∈ S let key(x) = maxi∈1...` ai · x. The key for each
point is its greatest projection value on any of the ` randomly-selected
projections. The data structure stores points (all of them, or enough to
accomodate the largest m we plan to use) in order of decreasing key
value: x1, x2, . . . where key(x1) ≥ key(x2) ≥ · · · . Note that this is not
the same query-independent data structure discussed in Section 2.2.2; it
differs both in the set of points stored and the order of sorting them.

The query examines the first m points in the query independent order-
ing and returns the one furthest from the query point. Sample mean
approximation factor for this algorithm in our experiments is shown by
the dotted lines in Figures 2.3–2.8.



42 Chapter 2. Furthest Neighbor

Variations on the algorithm We have experimented with a number of
practical improvements to the algorithm. The most significant is to use
the rank-based depth of projections rather than the projection value. In
this variation we sort the points by their projection value for each ai.
The first and last point then have depth 0, the second and second-to-last
have depth 1, and so on up to the middle at depth n/2. We find the
minimum depth of each point over all projections and store the points
in a query independent order using the minimum depth as the key. This
approach seems to give better results in practice. A further improvement
is to break ties in the minimum depth by count of how many times
that depth is achieved, giving more priority to investigating points that
repeatedly project to extreme values. Although such algorithms may be
difficult to analyse in general, we give some results in Section 2.2.2 for
the case where the data structure stores exactly the one most extreme
point from each projection.

The number of points examined m can be chosen per query and even
during a query, allowing for interactive search. After returning the best
result for some m, the algorithm can continue to a larger m for a possibly
better approximation factor on the same query. The smooth tradeoff we
observed between ` and m suggests that choosing an ` during prepro-
cessing will not much constrain the eventual choice of m.

Discussion The main experimental result is that the algorithm works
very well for the tested datasets in terms of returning good approxima-
tions of the furthest neighbor. Even for small ` and m the algorithm
returns good approximations. Another result is that the query inde-
pendent variation of the algorithm returns points only slighly worse
than the query dependent. The query independent algorithm is sim-
pler to implement, it can be queried in time O (m) as opposed to
O (m log `+ m) and uses only O (m) storage. In many cases these ad-
vances more than make up for the slightly worse approximation ob-
served in these experiments. However, by Theorem 2.3, to guarantee√

2− ε approximation the query-independent ordering version would
need to store and read m = n− 1 points.

In data sets of high intrinsic dimensionality, the furthest point from
a query may not be much further than any randomly selected point,
and we can ask whether our results are any better than a trivial random
selection from the database. The intrinsic dimensionality statistic ρ of
Chávez and Navarro [40] provides some insight into this question. Note
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that instrinsic dimensionality as measured by ρ is not the same thing
as the number of coordinates in a vector. For real data sets it is often
much smaller than that. Intrinsic dimensionality also applies to data
sets that are not vectors and do not have coordinates. Skala proves a for-
mula for the value of ρ on a multidimensional normal distribution [106,
Theorem 2.10]; it is 9.768 . . . for the 10-dimensional distribution used in
Figure 2.4. With the definition µ2/2σ2, this means the standard devi-
ation of a randomly selected distance will be about 32% of the mean
distance. Our experimental results come much closer than that to the
true furthest distance, and so are non-trivial.

The concentration of distances in data sets of high intrinsic dimen-
sionality reduces the usefulness of approximate furthest neighbor. Thus,
although we observed similar values of c in higher dimensions to our
10-dimensional random vector results, random vectors of higher dimen-
sion may represent a case where c-approximate furthest neighbor is not
a particularly interesting problem. However, vectors in a space with
many dimensions but low intrinsic dimensionality, such as the colors
database, are representative of many real applications, and our algo-
rithms performed well on such data sets.

The experimental results on the MovieLens 20M data set [66], which
were not included in the conference version of the present work, show
some interesting effects resulting from the very high nominal (number
of coordinates) dimensionality of this data set. The data set consists of
20000263 “ratings,” representing the opinions of 138493 users on 27278
movies. We treated this as a database of 27278 points (one for each
movie) in a 138493-dimensional Euclidean space, filling in zeroes for the
large majority of coordinates where a given user did not rate a given
movie. Because of their sparsity, vectors in this data set usually tend
to be orthogonal, with the distance between two simply determined by
their lengths. Since the vectors’ lengths vary over a wide range (length
proportional to number of users rating a movie, which varies widely),
the pairwise distances also have a large variance, implying a low intrin-
sic dimensionality. We measured it as ρ = 0.263.

The curves plotted in Figure 2.7 show similar behaviour to that of the
random distributions in Figures 2.3 and 2.4. Approximation factor im-
proves rapidly with more projections and points examined, in the same
pattern, but to a greater degree, as in the 10-coordinate vector databases,
which have higher intrinsic dimensionality. However, here there is no
noticeable penalty for using the query-independent algorithm. The data
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set appears to be dominated (insofar as furthest neighbours are con-
cerned) by a few extreme outliers: movies rated very differently from
any others. For almost any query, it is likely that one of these will be
at least a good approximation of the true furthest neighbour; so the
algorithm that identifies a set of outliers in advance and then chooses
among them gives essentially the same results as the more expensive
query-dependant algorithm.

2.4 Conclusion

We have proposed a data structure for solving the (c)-AFN problem.
The data structure retrieves candidate points based on their rankings
along random projections. To do so efficiently it employs a priority
queue that is populated at query time.

We give theoretical guarantees on the space and time requirements,
as well as experimental confirmation of these. Further we give a space
lower bound on any data structure that works to return the (c)-AFN
by iterating a fixed list. This bound supports the suspicions raised by
Goel et. al[60] that query time polynomial in d cannot be achieved for
c <
√

2. We also suggest a simplified algorithm that can be viewed as an
approximation of the convex hull. While harder to analyse, it is faster
and gives very satisfactory experimental results.

Our data structure extends naturally to general metric spaces. In-
stead of computing projections with dot products, which requires a vec-
tor space, we could choose some random pivots and order the points
by distance to each pivot. The query operation would be essentially un-
changed. Analysis and testing of this extension is a subject for future
work.
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Annulus Query

The annulus query problem from Section 1.2.2 can be viewed as a prob-
lem of finding nearest and furthest neighbors simultaneously. An obvi-
ous path to follow is to combine techniques for these problems into a
single data structure.

3.1 Introduction

Similarity search is concerned with locating elements from a set S that
are close to a given query q. The query can be thought of as describ-
ing criteria we would like returned items to satisfy. For example, if a
customer has expressed interest in a product q, we may want to rec-
ommend similar products. However, we might not want to recommend
products that are too similar. Thinking of e.g. a book recommenda-
tion, we do not want to recommend e.g. just an older translation of the
same work. We claim that a solution to the (c, r, w)- approximate annu-
lus query problem (Definition 1.3) can be found by suitably combining
Locality Sensitive Hashing techniques(LSH, See Section 1.3.7), with the
approximation technique for furthest neighbor presented in Chapter 2.
In this short chapter we show such a solution in (Rd, `2) with constant
failure probability.

3.1.1 Notation

Consider an LSH function family H = {Rd → U}. We say that H is
(r1, r2, p1, p2)-sensitive for (Rd, `2) if:
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1. PrH[h(q) = h(p)] ≥ p1 when ‖p− q‖2 ≤ r1

2. PrH[h(q) = h(p)] ≤ p2 when ‖p− q‖2 > r2

We will be using A(q, r, w) for the annulus between two balls, that is
A(q, r, w) = B(q, rw) \ B(q, r/w).

3.2 Upper bound

Theorem 3.1. Consider a (wr, wcr, p1, p2)-sensitive hash family H for
(Rd, `2) and let ρ =

log 1/p1
log 1/p2

. For any set S ⊆ Rd of at most n points there
exists a data structure for (c, r, w)-AAQ such that:

• Queries can be answered in time O
(

dnρ+1/c2
log(1−1/c2)/2 n

)
.

• The data structure takes space O
(

n2(ρ+1/c2) log1−1/c2
n
)

in addition to
storing S.

The failure probability is constant and can be reduced to any δ > 0 by
increasing the space and time cost by a constant factor.

We will now give a description of such a data structure and then
prove that it has the properties stated in Theorem 3.1.

Let k, ` and L be integer parameters to be chosen later. We construct a
function family G : Rd → Uk by concatenating k members of H. Choose
L functions g1, . . . , gL from G and pick ` random vectors a1, . . . , a` ∈ Rd

with entries sampled independently from N (0, 1).

Preprocessing During preprocessing, all points x ∈ S are hashed with
each of the functions g1, . . . , gL. We say that a point x is in a bucket Bj,i
if gj(x) = i. For every point x ∈ S the ` dot product values ai · x are
calculated. These values are stored in the bucket along with a reference
to x. Each bucket consists of ` linked lists, list i containing the entries
sorted on ai · x, decreasing from the head of the list. See Figure 3.1 for
an illustration where pi,j is the tuple (ai · xj, ref(xj)). A bucket provides
constant time access to the head of each list. Only non-empty buckets
are stored.
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Figure 3.1: Illustration of a bucket for {x1, x2, x3, x5} ⊂ S. ` = 3.

aT1 x

aT2 x

aT3 x
p3,2 p3,3 p3,1 p3,5

p2,5 p2,3 p2,1 p2,2

p1,5 p1,2 p1,3 p1,1

Bj,i.Head()

Querying For a given query point q the query procedure can be
viewed as building the set Sq of points from S within B(q, rcw) with
the largest ai∈[`] · (p − q) values and computing the distances between
q and the points in Sq. At query time q is hashed using g1, .., gL in
O(dL). From each bucket Bj,gj(q) the top pointer is selected from each
list. The selected points are then added to a priority queue with pri-
ority ai · (p − q). This is done in O(L`) time. Now we begin a cycle
of adding and removing elements from the priority queue. The largest
priority element is dequeued and the predecessor link is followed and
the returned pointer added to the queue. If the pointer just visited was
the last in its list, nothing is added to the queue. If the priority queue
becomes empty the algorithm fails. Since r is known at query time in
the (c, r, w)-AAQ it is possible to terminate the query procedure as soon
as some point within the annulus is found. Note that this differs from
the general furthest neighbor problem. For the analysis however we will
consider the worst case where only the last element in Sq lies in the an-
nulus and bound |Sq| to achieve constant success probability.
We now return to theorem 3.1

Proof. Fix a query point q. By the problem definition, we may assume
|S ∩ A(q, r, w)| ≥ 1. Define Sq ⊆ S to be the set of candidate points for
which the data structure described in section 3.2 calculates the distance
to q when queried. The correctness of the algorithm follows if |Sq ∩
A(q, r, cw)| ≥ 1.

To simplify the notation let Pnear = S ∩ B(q, r/(cw)) and Pfar = S−
B(q, r/w). The points in these two sets have useful properties. Let t be
the solution to the equality:

1√
2π

e
−t2

2

t
=

1
n
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If we set ∆ = rt
cw , we can use the ideas from Lemma 2.3 to conclude

that:

Pr[ai(p− q) ≥ ∆] ≤ 1
n

, for p ∈ Pnear (3.1)

Also, for p ∈ Pfar the lower bound gives:

Pr[ai(p− q) ≥ ∆] ≥ 1
(2π)(1−1/c2)/2

n−1/c2
t(1−1/c2)

(
1− c2

t2

)
By definition, t ∈ O(

√
log n), so for some function φ ∈

O(n1/c2
log(1−1/c2)/2 n) we get:

Pr[ai(p− q) ≥ ∆] ≥ 1
φ

, for p ∈ Pfar. (3.2)

Now for large n, let P be the set of points that projected above ∆ on at
least one projection vector and hashed to the same bucket as q for at
least one hash function.

P = {x ∈ S|∃j, i : gj(x) = gj(q) and ai · (x− q) ≥ ∆}

Let ` = 2φ, m = 1 + e2` and L = dnρ/p1e. Using the probability bound
(3.1) we see that E[|P ∩ Pnear|] ≤ 1

n n` = `. So Pr[|P ∩ Pnear| ≥ m] < 1/e2

by Markov’s inequality. By a result of Har-Peled, Indyk, and Mot-
wani [65, Theorem 3.4], the total number of points from S \ B(q, rcw)
across all gi(q) buckets is at most 3L with probability at least 2/3. So
Pr[|P \ B(q, rcw) > 3L] < 1/3. This bounds the number of too far and
too near points expected in P.

Pr[|P \ A(q, r, cw)| ≥ m + 3L] ≤ 1/3 + e−2

By applying [65, Theorem 3.4] again, we get that for each x ∈ A(q, r, w)
there exists i ∈ [L] such that gi(x) = gi(q) with probability at least 1−
1/e. Conditioning on the existence of this hash function, the probability
of a point projecting above ∆ is at least 1− (1− 1/φ)2φ ≥ 1− 1

e2 . Then
it follows that Pr[|P∩ A(q, r, w)| < 1] < 1/e + 1/e2. The points in P will
necessarily be added to Sq before all other points in the buckets; then, if
we allow for |Sq| = m + 3L, we get

Pr[|Sq ∩ A(q, r, cw)| ≥ 1] ≥ 1− (1/3 + 1/e + 2/e2) > 0.02.
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The data structure requires us to store the top O (mL) points per pro-
jection vector, per bucket, for a total space cost of O(m`L2), in addition
to storing the dataset, O(nd). The query time is O((dL + `L) + m(d +
log `L)). The first term is for initializing the priority queue, and the sec-
ond for constructing Sq and calculating distances. Let λ = (1− 1/c2)/2.
Since L = O(nρ) and `, m = O(n1/c2

logλ n) we get query time:

O
(

dnρ + nρ+1/c2
logλ n + n1/c2

logλ n
(

d + log (nρ+1/c2
logλ n)

))
(3.3)

Depending on the parameters different terms might dominate the cost.
But they can all be bounded by O(dnρ+1/c2

log(1−1/c2)/2 n) as stated in
the theorem. The hash buckets take space:

O
(

n2(ρ+1/c2) log1−1/c2
n
)

. (3.4)

Depending on c, we might want to bound the space by O(n`L) in-
stead, which yields a bound of O(n1+ρ+1/c2

log(1−1/c2)/2 n).

3.3 Conclusion

In this short chapter we showed a data structure for the (c, r, w)-
approximate annulus query problem. We showed that the query time is
sublinear in the size of S and linear in d. This makes the data structure
well suited for the high-dimensional, high-volume paradigm, although
the storage requirements can be quite large when c is close to 1. Later
results have shown that similar bounds can be achieved through the
combination of LSH with “anti”-LSH functions [17]. It is easy to employ
the query-independent variation of the furthest neighbor data structure
instead of the query dependent variation. This would significantly re-
duce the space usage from O(m`L2) to just O(m). It would also reduce
the query time, although that is not dominated by the priority queue
insertions that would be saved. Given our experimental results in Chap-
ter 2 this alternative it seems to offer an attractive, practical solution
to the approximate annulus query problem, although more difficult to
analyse theoretically.





Chapter 4

Distance Sensitive Approximate Membership

The Bloom filter [25] is a well-known data structure for answering ap-
proximate membership queries on a set S, i.e., queries of the form “Is x in
S?”. By allowing some false positive answers (saying ‘yes’ when the an-
swer is in fact ‘no’) Bloom filters use space significantly below what is
required for storing S. In the distance sensitive setting we work with a set
S of (Hamming) vectors and seek a data structure that offers a similar
trade-off, but answers queries of the form “Is x close to an element of
S?” (in Hamming distance). Previous work on distance sensitive Bloom
filters have accepted false positive and false negative answers. Absence
of false negatives is of critical importance in many applications of Bloom
filters, so it is natural to ask if this can be also achieved in the distance
sensitive setting. Our main contributions are upper and lower bounds
(that are tight in several cases) for space usage in the distance sensitive
setting where false negatives are not allowed.

4.1 Introduction

In this Chapter we present upper and lower bounds on the space
complexity of filters for distance sensitive approximate membership
queries((r, c, ε)-DAMQ, Definition 1.4) in ({0, 1}d, H). These filters an-
swer queries of the form “Is x similar to some element of S?” Where
“similar” means within a given Hamming distance r. We study distance
sensitive filters under an approximation factor c ≥ 1: a small false pos-
itive rate ε is allowed when S has points at distance more than cr from
the query point. However, false negatives are never allowed. This is in
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contrast to previous work on this problem [77]. To our best knowledge,
ours is the first solution with no false negatives.

4.1.1 Motivation and practicality

Bloom filters are widely used in practice. One reason is because they
require less space than a dictionary data structure for storing S. We
argue that the lack of false negatives is also of critical importance to their
frequent use in practice.

Generally the set S is a subset from some much larger domain. If
queries are roughly uniformly selected from the domain, answers to a
membership query should most often be negative. For this majority
of queries the Bloom filter always gives the correct, negative, answer.
Since the filter then rarely gives a positive, possibly wrong, answer,
these queries could all be double-checked using an exact, but less space-
efficient, less accessible method (perhaps on a different machine). This
allows us to use Bloom filters as a first component in an exact two-level
data structure. Here it acts as an initial filter, reducing the use of a sec-
ond, slower to access but exact data structure. Having false negatives
means this two-level structure would fail to be exact. We would have
to choose one of the levels: Either accept some possibility of getting a
wrong answer or perform an expensive exact query every time. We are
motivated by providing a data structure for distance sensitive member-
ship query that can be used in this way, i.e. that does not have false
negatives.

There are many potential applications for this kind of data structure.
As a concrete example, consider a journal comprising a large collection
of academic papers. When accepting a new paper the journal might
want to check if the new paper is very similar to any prior work al-
ready published. By using a distance-sensitive filter this can be done
in a space-efficient manner. Because we do not allow false negatives,
any new paper passing this test (with a ‘no’ result) is guaranteed to be
significantly different from all prior work. In the rare case that a paper
fails the test, the submission process could be halted pending a con-
sultation of the full archive. Furthermore, since the filter provides very
little information about the content of the papers it would not need to
be subject to the same access control as a full database of all the journals
papers might be under. More interesting examples of applications for
distance-sensitive filters can be found in [77] and for Bloom filters in
general in [29].
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4.1.2 Our results

We study the space required for answering distance-sensitive approxi-
mate membership queries with no false negatives. It turns out that, in
contrast to approximate membership, we get different bounds depend-
ing on how the false positive rate is defined:

• If we desire a point-wise error bound (Definition 4.2) for
each query at distance ≥ cr from S, the space usage
must be Ω

(
n
(

r2

d + log 1
ε

))
for almost all parameters, and

Ω
(

n
(

r
c +

c
c−1 log 1

ε

))
bits if n is not too large (see Theorem 4.3).

• If it suffices to have an ε average false positive rate (Definition 4.3)
over all queries at distance ≥ cr from S, where Cl < d/2, the space
usage must be Ω

(
n
(

r2

d + log 1
ε

))
bits. (see Theorem 4.2).

We match these lower bounds with almost tight upper bounds on space
usage in Section. 4.4. We introduce the notion of vector signature, which
can be seen as a succinct version of a CountSketch [38], and then show
how to use them to design distance sensitive filters with point-wise and
average errors.

Our focus is on space usage rather than query-time, and indeed it
would be surprising if poly-logarithmic query time in n is possible since
our (point-wise) filter could be used, say with ε = 1/n, to solve the c-
approximate nearest neighbor problem. The best currently know data
structures for this problem use nΩ(1/c) time [14].

4.1.3 Related work

There is little prior work specifically on distance sensitive approximate
membership. The problem corresponds to querying a standard Bloom
filter in a ball around the query point, but this solution is slow, time
Ω((d

r)), and also not particularly space efficient since we would need to
use a Bloom filter with a very small false positive rate to bound the prob-
ability that none of the queries yield a false positive. More precisely, the
required space usage for this approach would be Ω(nr log d

r ) bits [34].
Mitzenmacher and Kirsch [77] considered data structures that look

like Bloom filters but replace standard hash functions with locality sensi-
tive hash (LSH) functions [72] to achieve distance sensitivity. However,
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this approach introduces false negatives because LSH is not guaran-
teed to produce collisions. In order to reduce the number of false nega-
tives the conjunction used when querying Bloom filters is replaced by a
threshold function: there should just be “many” hash collisions. Unfor-
tunately, the achieved approximation factor is large, i.e. c = O (log n).
Hua et al. [68] extended the data structure of [77] with practical im-
provements and provided extensive experiments, confirming that false
negatives also appear in practice.

There has been some recent progress on developing LSH families
that can answer near neighbor queries without false negatives [94], but it
seems inherent to such families that the storage cost grows exponentially
with r. Thus this approach is not promising, perhaps except for very
small values of r.

Finally, it is known that allowing a constant fraction of false negatives
does not asymptotically improve the space usage that can be achieved
by approximate membership data structures [96]. It is not apriori clear
that space usage will be worse when false negatives are not allowed.

4.2 Problem definition and notation

The Hamming distance H(p, q) between two points p, q ∈ {0, 1}d is the
number of positions where p and q differ. Given a set S ⊆ {0, 1}d of
n points and a point q ∈ {0, 1}d, we extend the meaning of H(·) by
defining H(q, S) to be the minimum distance between q and any point in
S, i.e. H(q, S) = minp∈S H(q, p). We use (A

n) to denote {S ⊆ A : |S| = n}
when A is a set. We will be using the Bd(x, r) notation as defined in
section 2.1.2.

We formally define distance sensitive approximate membership filters as
follows:

Definition 4.1. (Distance sensitive approximate membership filter) Let
r ≥ 0, c ≥ 1, and ε ∈ [0, 1]. Given a set S ⊂ {0, 1}d define the two sets:

Qnear = {x ∈ {0, 1}d : H(x, S) ≤ r},
Qfar = {x ∈ {0, 1}d : H(x, S) > cr}.

A (r, c, ε)-distance sensitive approximate membership filter for S is a
data-structure that on a query q ∈ {0, 1}d reports:

• ‘Yes’ if q ∈ Qnear
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• ‘No’ if q ∈ Qfar, but with some probability of error (i.e. false posi-
tives).

If q /∈ Qnear ∪Qfar the data structure can return any answer.

Qnear

Qfar

X

X

X

×

×

×

×

××

?

r

cr

Figure 4.1: Illustration for n = 2 showing some queries with their de-
sired output: X→ ‘Yes’, × →‘No’, ? → Undefined.

In the rest of the chapter, we study space bounds under two error
measures, named point-wise and average errors.

Definition 4.2 (Point-wise error). A (r, c, ε)-distance sensitive approx-
imate membership filter for S has point-wise error ε if, on a query
q ∈ {0, 1}d, it reports:

• ‘Yes’ if q ∈ Qnear;

• ‘No’ with probability at least 1− ε if q ∈ Qfar (the probability is
over the random choices of the filter).

This is a strong guarantee since each point in Qfar has probability ε

to fail. If hard queries are not expected, it might be acceptable that some
points give false positives in every instance of the data structure, as long
as only an ε total fraction of points in Qfar give false positives. We refer
to this weaker filter as the average error version:

Definition 4.3 (Average error). A (r, c, ε)-distance sensitive approximate
membership filter for S has average error ε if, on a query q ∈ {0, 1}d, it
reports:
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• ‘Yes’ if q ∈ Qnear;

• ‘No’ with probability at least 1− ε, if q is randomly and uniformly
selected from Qfar (the probability is over the random selection in
Qfar and over the random choices of the filter).

The average-error guarantee implies that the filter provides the cor-
rect answer to at least a (1− ε) fraction, in expectation, of the points in
Qfar. Clearly, a filter with point-wise error is also a filter with average er-
ror. Though the difference between these two error measures may seem
small, their properties and analysis differ substantially.

4.3 Lower bounds

As a warm-up, we first investigate what can be done when no errors
are allowed, that is when ε = 0 (in this case the average and point-wise
error guarantees are equivalent). The next theorem shows that, up to
constant factors, the optimal filter is no better than one that stores S
explicitly. When ε = 0 there is no distinction between point-wise and
average error. Throughout this chapter we let log x denote the logarithm
of x in base 2.

Theorem 4.1. Any distance sensitive approximate membership filter with error
ε = 0 must use at least

n log

(
2d

en|Bd(cr)|

)
bits in the worst case. If d = ω(log n) and cr = o (d/ log d) then it must use
Ω (nd) bits.

Proof. The proof is an encoding argument. A set S ⊆ {0, 1}d of size n
is encoded by Alice and sent to Bob who will recover it. Assume the
optimal filter uses s bits in the worst case. Alice inserts the given set S
into the optimal filter, and runs the query algorithm on each point in
the universe. Since there are no false positives, the filter says ‘yes’ to
a set P of at most n|Bd(cr)| points. Alice encodes S as a subset of P
using log (n|Bd(cr)|

n ) +O (1) bits. Alice then sends the at most s bits of the
optimal filter to Bob along with the strings encoding S as a subset of P.

The decoding procedure is straightforward. Bob queries the optimal
filter with all points in {0, 1}d, recovering P. Then, using P and the
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second string of bits received from Alice, Bob can recover the initial set
S.

Since every set S of size n can be encoded, we get that:

s + log
(

n|Bd(cr)|
n

)
≥ log

(
2d

n

)
from which follows that

s ≥ log

((
2d

n

)n

/
(

en|Bd(cr)|
n

)n
)

≥ nd− n log(en)− n log |Bd(cr)|
If d = ω(log n), we get s = Ω (nd− n log |Bd(cr)|). Further, us-

ing that |Bd(cr)| = ∑cr
i=0 (

d
i) < dcr for cr < d/2, we get that s =

Ω (nd− ncr log d), which is Ω (nd) when cr = o (d/ log d).

4.3.1 Average error

Next we investigate the distance sensitive membership problem with
average error ε > 0.

Theorem 4.2. Assume that n|Bd(cr)|/2d < ε < 1/4. Then any distance
sensitive membership filter with average error ε must use

Ω
(

n
(

r2

d
+ log

(
1
ε

)))
bits in the worst case.

Before proving the theorem, we highlight some remarks:

1. The above theorem holds as long as n|Bd(cr)| < 2d−2, i.e. the
“membership set” covers less than a quarter of the full Hamming
space. This is the most interesting range of parameters. Similarly
to Bloom filters, our approach is not optimal when non-members
are rare. As we will see later, the Ω(nr2/d) lower bound holds as
long as n|Bd(cr)| < 2d−1, and it starts to deteriorate when n|Bd(cr)|
approaches 2d. It is clear that some upper bound on n|Bd(cr)| is
necessary; if it approaches size 2d −O(n/d), then storing the com-
plement exactly in O(n) bits suffices. Also note that at the lower
limit of ε = n|Bd(cr)|/2d, this lower bound matches the lower
bound of the ε = 0 case in Theorem 4.1. Thus Theorem 4.1 fol-
lows from Theorem 4.2.
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2. The term |Bd(cr)| has no simple closed expression for all c and r,
and so the dependence of the hypothesis of the theorem on c, r
and d is not straightforward.

The rest of this section is devoted to the proof of Theorem 4.2.

Proof. The proof is derived for a deterministic version of the distance
sensitive membership filter: in this setting, the filter answers ‘no’ to at
least a fraction of points in Qfar (i.e., points at distance at least cr from all
points in the input point set S), and hence there can be at most ε|Qfar|
false positives. We claim that such a lower bound applies also to a
randomized filter. Suppose that a randomized filter requires s bits, with
s smaller than the lower bound. Since the expected number of correct
‘no’ answers is at least (1− ε)|Qfar|, there must exist random values for
which the filter provides the correct solution for at least (1 − ε)|Qfar|
points: by using these values, we obtain a deterministic average error
filter with space complexity s lower than the lower bound, which is a
contradiction.

We first prove a Ω (n log(1/ε)) lower bound. The proof is an encod-
ing argument that extends the scheme presented in the proof of Theo-
rem 4.1 and in [34]. Alice receives a set S of size n from the universe
to encode. Assume the optimal distance sensitive filter with ε average
error uses s bits in the worst case. Alice inserts S into the filter, and runs
the query algorithm on all points in the universe recovering P, the set of
points the filter answers ‘Yes’ to. We first claim that |P| ≤ 2d+1ε. First,
the number of positives not considered false is at most n|Bd(cr)| (this
bound is achieved when all the balls are disjoint), which is less than 2dε.
Also the number of false positives is always at most 2dε. Adding these,
we find that the total number of positives is at most 2d+1ε. Alice then
encodes the set S as a subset of P, using at most log (2d+1ε

n ) bits. Alice
sends these bits to Bob along with the at most s bits representing the
optimal filter for S.

Bob queries the filter with all q ∈ {0, 1}d and recovers P. Bob then
uses the extra bits sent by Alice to find the subset of P identical to S. We
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have that:

s + log
(

2d+1ε

n

)
≥ log

(
2d

n

)
⇒ s ≥ log

2d · · · (2d − n + 1)
(ε2d+1) · · · (ε2d+1 − n + 1)

⇒ s ≥ log

(
2d

ε2d+1

)n

⇒ s ≥ n log
(

1
2ε

)
∈ Ω

(
n log

(
1
ε

))
.

To prove the nr2/d lower bound, we first introduce some notation.
Consider the hypercube graph on the d-dimensional Hamming cube
where two points p and q have an edge between them if they have Ham-
ming distance 1. Given a set A ⊂ {0, 1}d, let Ac denote its complement,
and define ∂A to be the set of points in A that have an edge to a point in
Ac (when either Ac or A is empty, ∂A is the empty set). Also, given an
integer r > 0, define A−r = A \⋃x∈∂A Bd(x, r− 1). A−r contains exactly
those points x ∈ A such that the ball Bd(x, r) is contained inside A.

A deterministic filter that uses s bits can be viewed as a function
F : ({0,1}d

n ) → {0, 1}s; given a set S ⊆ {0, 1}d of size n, F (S) is the
memory representation of S that uses at most s bits. Let V(S) = | ∪x∈S
Bd(x, r)|+ ε(2d − | ∪x∈S Bd(x, r)|): we note that V(S) is an upper bound
to the number of ‘yes’ answers returned by the filter (i.e., both true and
false positives), and V(S) ≤ 2d−1 by the hypothesis of the theorem.

Running the query algorithm on all points in the Hamming cube for
the representation F (S) returns a set PS of positives (PS

c of negatives)
such that |PS| ≤ V(S). Let us denote by D the function that takes in a set
S, and outputs the set PS of positives returned by the query algorithm
on the representation F (S).

Varying over all S ∈ ({0,1}d

n ), we get a family T of sets such that:

1. ∀S, ∃P ∈ T such that Bd(x, r) ⊂ P for all x ∈ S.

2. For any P ∈ T and ∀S such that D(S) = P, |P| ≤ V(S).

Thus D is a function from {0, 1}s to T , the image of which is all of
T . This implies that s ≥ log |T |. So in order to get a lower bound on s
it suffices to get a lower bound on the size of the smallest family T with
the above properties.
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Fix P ∈ T . Define D−1(P) = {S : D(S) = P}. Any ball of radius
r around a point p ∈ S such that S ∈ D−1(P) must be completely con-
tained inside P. The maximum number of such points p is |P−r|. Thus
we get that | ∪S∈D−1(P) S| ≤ |P−r|. This implies that |D−1(P)| ≤ (|P

−r|
n ).

Since all possible sets (from ({0,1}d

n )) need to be covered, we get that

|T | ≥ (2d

n )/(
|P−r|

n ). We now need an upper bound on the size of |P−r|.
Lemma 4.1 states that |P−r| ≤ 2de−2r2/d.

The proof of the lower bound in Theorem 4.2 then follows by apply-
ing Lemma 4.1:

|T | ≥
(

2d

n

)
/
(|P−r|

n

)
≥
(

e2d

|P−r|

)n

≥ en(2r2/d+1),

which implies that s ≥ log T = Ω
(
nr2/d

)
. Combining our bounds, we

get that when n, r and c satisfy the condition that nB(cr, d) ≤ 2d−2, any
filter must use Ω(n(r2/d + log(1/ε))) bits in the worst case.

Lemma 4.1. Let S, P and r be as above. Then |P−r| < 2de−2r2/d.

Proof. Note that P is the set of positives (after running the query algo-
rithm on all points in the Hamming space) on the filter F (S). Thus we
have that |P| ≤ V(S) ≤ 2d−1. The size of P−r increases as P increases, so
we have that |P−r| is at most max |A−r|, where the maximum is taken
over all sets A such that |A| = 2d−1.

We will first prove that if |A| = 2d−1, then max |A−r| is at most
B(d/2 − r, d) (the size of the Hamming ball of radius d/2 − r). The
proof is by induction (the statement is actually true for any r < d/2, not
just the input parameter r, and so we will treat it as a variable).

For r = 1, the statement is that |A−1| is maximized when A is the
Hamming ball of radius d/2. This is the statement of Harper’s theorem,
also called the vertex-isoperimetric inequality [26], that states that Ham-
ming balls have the smallest vertex boundary among all sets of a given
size.

Assume now that the statement is true for r = k, i.e., of all sets A
such that |A| = 2d−1, the one that maximizes |A−k| is the Hamming ball
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of radius d/2. In this case, note that A−k is the Hamming ball of radius
d/2− k.

Assume that the statement for r = k + 1 is false, i.e., there is a set W
(of size 2d−1) such that |Bd(0, d/2)−(k+1)| < |W−(k+1)|. Note that by the
inductive hypothesis, we know that |Bd(0, d/2)−k| ≥ |W−k|.

However, the vertex-isoperimetric inequality can also be stated as: if
a set W (that is not a ball) has size greater then or equal to that of the
Hamming ball of radius R, then |W ∪ Γ(W)| is larger than the size of
Hamming ball of radius R + 1, where Γ(W) is the set of neighbors of W.
Thus |Bd(0, d/2)−(k+1)| < |W−(k+1)| actually implies |Bd(0, d/2)−k| <
|W−k|, which contradicts the inductive hypothesis.

Finally, we bound |Bd(d/2 − r)| using the following Chernoff-
Hoeffding bound [89] for binomial random variables:

If Xi denotes the outcome of the ith coin toss with an unbiased coin,
and X = ∑d

i=1 Xi, then Pr[X ≤ µ− a] ≤ e−2a2/d, for all 0 < a < µ, where
µ = E[X] = d/2. Let X ∼ B(d, 0.5). Now we have that

|P−r| ≤|Bd(d/2− r)|
=2dP[X ≤ d/2− r]

≤2de−2r2/d.

4.3.2 Point-wise error

The lower bound for the average case in Theorem 4.2 also applies to a
filter with point-wise error guarantees. A (r, c, ε)-filter with point-wise
error ε is also a (r, c, ε)-filter with average error ε: if each point fails with
probability ε, then a random point fails with probability ε. However, a
stronger lower bound holds for point-wise error if the number of points
n is not too large.

Theorem 4.3. Consider an (r, c, ε)-distance sensitive approximate membership
filter with point-wise error on a set S of n points in {0, 1}d. Then, in the worst
case, the filter must use:

• Ω
(

n
(

r2

d + log 1
ε

))
bits if n|Bd(cr)|/2d < ε < 1/4.

• Ω
(

n
(

r
c + log 1

ε

))
bits if n|Bδcr(cr)|/2δcr < ε < 1/4 for some con-

stant δ.
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Proof. As already said, the first bound follows by applying Theorem 4.2
since a (r, c, ε)-filter with point-wise error is also a (r, c, ε)-filter with
average error.

We now prove the second claim. Observe that a filter for d-
dimensional points with point-wise error ε is also a filter for d′-
dimensional points with the same guarantees when d > d′. Then, the
lower bound obtained by Theorem 4.2 for dimension d′ = δcr, for some
small constant δ, applies to dimension d, and it is also stronger since the
lower bound in Theorem 4.2 is decreasing in d. However, the new bound
needs to meet the condition of Theorem 4.2: given a filter for dimension
d′ = δcr, then the condition states that n|Bδcr(cr)|/2δcr < ε < 1/4. The
theorem follows.

We observe that the proof used to derive the stronger lower bound
does not work for the average error measure: indeed, the average error
rate relatively to a subspace (e.g., {0, 1}d′) can be much larger than the
one in the complete space (i.e., {0, 1}d).

As we will see in the next section, there exists a filter that almost
match the asymptotic lower bound if c ≥ 2. However, if 1 < c < 2 and
ε is sufficiently small, the upper bound has a O

(
1/(c− 1)2) overhead:

although the upper bound is not optimal, the next theorem shows that a
1/(c− 1) overhead is unavoidable when 1 < c < 2. To help in assessing
the hypothesis in the theorem, we notice that, when c = 1 + 1√

r , the the-

orem holds for n ≤ 2Θ(r), ε ≤ 2−Θ(r), d = 2Ω(
√

r) and it gives a Ω
(
nr3/2)

bound, whereas the previous theorem only gave Ω (nr). We note that
the next theorem can be integrated with the previous Theorem 4.3 to get
an additive nr/c or nr2/d more (according to the parameters).

Theorem 4.4. Let c ≤ 2, ε ≤ (c − 1)/n be such that d(c − 1) ≥ ((c −
1)/ε)6/(r(c−1)) + (r(c− 1))3. Consider an (r, c, ε)-distance sensitive approxi-
mate membership filter with point-wise error ε on a S set of n points in {0, 1}d.
Then, the filter requires

Ω
(

n
c− 1

log
(

1
ε

))
bits in the worst case.

Proof. The main idea of the proof is to use the optimal filter in a one-way
randomized protocol between two players (Alice and Bob) to send an
arbitrary element x of a given set S from Alice to Bob who must identify
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which element he has: It is known (See the indexing problem [80]) that
such a protocol requires Ω (log |S|) bits if the protocol succeeds with
probability at least 2/3 and the two players share random bits. The
proof uses two families of error correcting codes, C and M, that are
explained below. Without loss of generality we assume that they are
known to both Alice and Bob (the code families can be constructed with
a deterministic brute-force algorithm).

Let k = 1/(c − 1). The error correcting binary code C has m =
1/(nεk) codewords, each one with length dC = d/k bits, weight w = r/k
and minimum Hamming distance between two codewords at least δ =
r/k. [63, Theorem 6] shows that such a code exists of size at least

dw−δ/2+1
C

δ!
≥ (d(c− 1))r(c−1)/2

(r(c− 1))r(c−1)

≥ (d(c− 1))r(c−1)/6

≥ c− 1
ε

where in the third inequality we exploit the fact that d(c− 1) ≥ (r(c−
1))3 and in the last step we use d(c− 1) ≥ ((c− 1)/ε)6/(r(c−1)).

The error correcting binary codeM has n codewords and minimum
Hamming distance rc (there is no requirement on codewords weights);
we letM = {m1, . . . , mn}. By the Gilbert-Varshamov [85] bound such a
codeM exists with length dM = rc + log n.

Alice arbitrary selects n codes xi = (xi,1, . . . , xi,k−1) from the set Ck.
Then, she encodes each xi into x̂i = xi,1 · . . . · xi,k · z0 ·mi, where · denotes
the concatenation of binary sequences, z0 is a sequence of r/k = r(c− 1)
zeros, and mi ∈ M. The length of each x̂i is dx = kdC + dM + r/k =
d + log n + r(2c− 1). Finally, Alice inserts x̂0, . . . , x̂n−1 into the optimal
filter and sends the filter to Bob using S(n, dX, c, r) bits.

We now show that Bob can reconstruct each codeword xi by querying
the filter at most 1/ε times. Codeword xi,1 is obtained by performing a
query with q = q′ · z2 · z3 ·mi for every possible codeword q′ ∈ C, where
z2 is a sequence of (k− 1)δ = (k− 1)r(c− 1) zeros, z3 is a sequence of
r/k ones, and mi ∈ M. The distance between q′ and any x̂j in the filter
is D(x̂j, q) = D(xj,1, q′) + D(xj,2 · . . . · xi,k, z2) + D(z0, z3) + D(mj, mi). It
holds that:

1. D(xi,1, q′) ≥ r(c− 1) if q 6= xi,1 and 0 otherwise;
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2. D(xj,2 · . . . xi,k, z1) = (k− 1)r(c− 1) = r− r(c− 1) since each code-
word in C has weight r(c− 1);

3. D(z0, z3) = r(c− 1);

4. D(mj, mi) ≥ rc if mj 6= mi and 0 otherwise.

Therefore, D(x̂j, q) = r if xi,1 = q′ and mi = mj, and D(x̂j, q) ≥ rc
otherwise. A similar procedure holds for computing xi,j for each i and
j.

Bob performs mk queries per xi and nkm = 1/ε queries in total.
The expected number of wrong queries is then 1 and, if the protocol is
repeated independently, there is a constant probability that all queries
succeed. Since Bob is able to reconstruct an entry from the set S = Cnk,
by the aforementioned result in [80], we have

S(n, dx, c, r, ε) ≥ Ω (logS)
≥ Ω

(
log |C|nk

)
≥ n

c− 1
log(1/ε).

4.4 Upper bounds

In this section we propose distance sensitive approximate membership
filters with point-wise and average errors. We start in Section 4.4.1 by
introducing the concept of vector signature. It can be seen as a succinct
version of CountSketch [38], where we have thrown away information
not required for answering distance sensitive approximate membership
queries. In Sections 4.4.2 and 4.4.3, we then show how to use vector sig-
natures to derive almost-optimal approximate membership filters with
point-wise and average errors respectively.

4.4.1 Vector signatures

A vector signature is a suitable function mapping a vector from {0, 1}d

into O
(

r
(c−1) +

( c
c−1

)2 log
(

1
ε

))
bits. The key feature of vector signa-

tures is that a suitable function of the signatures of two vectors x and y
is smaller than or equal to a certain threshold Ψ if D(x, y) ≤ r, while it
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is larger than Ψ with probability 1− ε if D(x, y) ≥ cr, as formalized in
Theorem 4.5.

Signature construction.

The construction of the signature uses four parameters m, cmod, cdiv and
δ that all depend on r, c and ε. Their values will be provided later.

Let M be a m× d random matrix with entries chosen as follows. For
each i ∈ {1, . . . , m}, j ∈ {1, . . . , d}, let Mi,j denote the element in the ith
row and jth column of M, and let mi denote the ith row. Every entry
of M is initially set to 0. Then each column j of M is constructed by
performing δ = O (1 + (c/r) log(1/ε)) updates, where each update is
defined by the following three steps:

1. Select s independently and uniformly from {−1, 1}.

2. Select a row i uniformly at random from {1, . . . , m}.

3. Update the entry at Mi,j by adding s.

We let ui denote the number of updates performed on all entries of row
mi; we have that ‖mi‖1 ≤ ui (equality may not hold since two updates
can affect the same entry and cancel each other).

For notational simplicity, we introduce the mod∗ operator: it is
similar to the standard modulo operator, but it maps into the range
[−bcmod/2c, dcmod/2e) (the range is symmetric around zero when cmod
is even). Specifically,

α mod∗ cmod =
((

α +
⌊ cmod

2

⌋)
mod cmod

)
−
⌊ cmod

2

⌋
,

where mod denotes the standard modulo operation into [0, cmod).
Let cdiv, cmod be suitable values with asymptotic value O (c). The

signature of a vector x ∈ {0, 1}d is then the m-dimensional vector σ(x)
defined by

σ(x)i =

⌊
(Mx)i mod∗ cmod

cdiv

⌋
.

Intuitively, the signature is a CountSketch where we remove large values
with mod∗ cmod, and remove the less significant bits with the division
by cdiv.
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The gap vector between vectors x and y is the m-dimensional vector
Γ(x, y) where the ith entry is

Γ(x, y)i = cdiv (σ(x)i − σ(y)i mod∗ cmod) .

Finally, we refer to γ(x, y) = ‖Γ(x, y)‖1 as the gap between x and y.
The following theorem describes the main property of signature vec-

tors.

Theorem 4.5. Let m = O
(

r
(c−1) +

( c
c−1

)2 log
(

1
ε

))
, δ =

O
(
1 + c

r log(1/ε)
)
, cdiv = O (c), and cmod = O (c) be suitable values.

Then, there exists a value Ψ = O (δr), such that for each pair of vectors
x, y ∈ {0, 1}d:

• if D(x, y) ≤ r, then γ(x, y) ≤ Ψ;

• if D(x, y) > cr, then γ(x, y) > Ψ with probability at least 1− ε.

We split the proof of Theorem 4.5 into two cases depending on the
value of the approximation factor c: we first target constant approxima-
tion factors, and then we focus on larger values. In the following proofs,
we assume for notational convenience that two given vectors x and y
differ on the first D(x, y) positions. We let x′ and y′ denote the prefix
of length D(x, y) of x and y (i.e., the positions where they differ), M′

denote the first D(x, y) columns of M, m′i the ith row of M′, and u′i the
number of updates affecting m′i.

Proof of Theorem 4.5 with c = O(1).

For the case c = O (1), we set the following parameters:

m =

⌈
24

c2

c− 1
max

{
r,

2
c− 1

log
(

1
ε

)}⌉
,

cdiv = 1,
cmod = 2,
δ = 1,
Ψ = r.

Note that the above values are consistent with the asymptotic values
stated in Theorem 4.5 since c = O (1). With these values, the signature
definition simplifies to

σ(x)i = (Mx)i mod∗ 2,
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where each column of M is a random vector with exactly one entry in
{−1, 1} and the remaining m− 1 entries set to zero. Then, the gap vector
becomes:

Γ(x, y)i = M(x− y)i mod∗ 2 = M′(x′ − y′)i mod∗ 2.

The first equality is true because there is no rounding if cdiv = 1, and
σ is a linear function of x and y. The second one follows since the bit
positions where x and y are equal do not affect the gap vector.

When D(x, y) ≤ r, M′ contains at most r entries in {−1, 1} and hence
γ(x, y) = ‖M′(x′ − y′)‖1 ≤ r, proving the first part of Theorem 4.5.

Consider now the case D(x, y) ≥ cr. The second part of Theorem 4.5
follows by two claims:

Claim 1: With probability at least 1− ε, there are more than r rows of M′

affected by an odd number of updates; we refer to these rows
as odd rows.

Claim 2: If m′i is an odd row, then |Γ(x, y)i| = 1.

The two claims imply that γ(x, y) = ∑m
i=1 |Γi(x, y)| > r = Ψ and hence

Theorem 4.5 follows. The following Lemmas 4.2 and 4.3 show that the
above claims hold.

Lemma 4.2 (Claim 1). Let x, y be two input vectors in {0, 1}d, and let M′

be the sub-matrix of M associated with the positions where x and y differ. If x
and y have distance at least cr, then there are more than r odd rows in M′ with
probability at least 1− ε.

Proof. Consider the D(x, y) updates used in the construction of M′. If
after the first D(x, y) − cr updates there are more than (c + 1)r rows
with an odd number of updates, then the theorem follows: indeed, the
remaining cr updates can decrease the number of odd rows by at most
cr.

Suppose now that there are Yo ≤ (c + 1)r odd rows after the first
D(x, y) − cr updates, and consider the last cr updates. Let Yj, with
j ∈ {1, . . . cr} be a random variable set to 1 if the jth update affects
an odd row, which then becomes an even row; Yi is set to 0 otherwise.
The probability that Yj = 1 is p ≤ (Yo + j− 1)/m ≤ 3cr/m since there
can be at most Yo + j − 1 odd rows before the jth update: the initial
Yo odd rows and the rows affected by the previous j− 1 updates. Let
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Y = ∑cr
j=1 Yj. The expected value of Y is µ = pcr ≤ 3(cr)2/m. Let

η = (c− 1)r/(2µ)− 1 (note that η ≥ 0). By a Chernoff bound, we have

Pr[Y ≥ (c− 1)r/2] =Pr[Y ≥ µ(1 + η)] ≤ e−η2µ/2

≤e
−
(
( c−1

c )
2 m

24+
3(cr)2

2m −
(c−1)r

2

)

≤e−
(
( c−1

c )
2 m

24−
(c−1)r

2

)
≤ε.

Therefore, with probability at least 1− ε, there are Y < (c − 1)r/2
updates that affect odd rows and make them even. It follows that the
number of odd rows after all updates is then Y0 + (cr − Y)− Y ≥ cr −
2Y > r.

Lemma 4.3 (Claim 2). If row m′i is odd, then |Γi(x, y)| = 1.

Proof. When δ = 1, there is one update per column and the number of
non zero entries in m′i coincides with the number of updates (this may
not happen if δ > 1). Let h1, . . . , hui denote the ui non zero entries in m′i.
We have that mi(x′ − y′) = ∑ui

j=1 M′i,hj
(x′hj
− y′hj

). Since (x′hj
− y′hj

) and

M′i,j are in {−1, 1} and since ui is odd, then the sum must be odd and
|Γi(x, y)| = |m′i(x′ − y′) mod∗ 2| = 1.

Proof of Theorem 4.5 for c = 1 + Ω(1).

Let β = 15/(p1p2)
2 where p1 and p2 are suitable constants (e.g. p1 = 0.9,

p2 = 0.094). The proof presented here then holds for c ≥
√

5β/(4p2
2) ≈

545. We believe that a smaller approximation factor c can be obtained
with a more careful analysis of the constants. The parameters used in
the signature construction are set as follows:

m =

⌈
β max

{
r
c

, log
(

2
ε

)}⌉
,

cdiv =
2c√
5β

,

cmod = 8c,

δ =

⌈
c
r

log
(

2
ε

)⌉
,

Ψ = δr + max
{

r, c log
(

2
ε

)}
.
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Note that the above values are consistent with the asymptotic values
stated in Theorem 4.5 since c = 1 + Ω(1). In contrast to the c = O (1)
case, the gap vector and the gap cannot be expressed as a function of
only the positions where x and y differ (i.e., x′ and y′). In fact, due to
the division by cdiv and the floor operation, the gap vector may depend
on the positions where x and y coincide. However, we can still provide
upper and lower bounds on the gap that depend only on x′ and y′.
Indeed, it holds that:

|Γi(x, y)| > |m′i(x′ − y′) mod∗ cmod| − cdiv

|Γi(x, y)| < |m′i(x′ − y′) mod∗ cmod|+ cdiv.
(4.1)

Suppose D(x, y) ≤ r, then by (4.1) the gap can be upper bounded as
follows:

γ(x, y) =
m

∑
i=1
|Γi(x, y)|

≤
m

∑
i=1

(
|m′i(x′ − y′) mod∗ cmod|+ cdiv

)
≤ cdivm +

m

∑
i=1
|m′i(x′ − y′)|

≤ max
{

r, c log
(

2
ε

)}
+ δr = Ψ.

In the third step, it is crucial to use mod∗ instead of mod since it
guarantees that |α mod∗ cmod| ≤ |α|. The last step is true since entries
in x′ − y′ are in {−1, 1} and M′ contains at most δr non-zero entries.
The first part of Theorem 4.5 follows.

Suppose now that D(x, y) ≥ cr. We say that row m′i is dense if the
number of updates ui is at least 4δD(x, y)/(5m). The proof that the gap
is larger than Ψ with probability at least 1− ε relies on the following
claims:

Claim 3: With probability at least 1− ε/2, the number of dense rows is
at least p1m.

Claim 4: With probability at least p2, we have |Γi(x, y)| > 2c/
√

5β for a
dense row m′i.

Claim 5: With probability at least 1− ε, there are at least 0.89p1p2m rows
such that |Γi(x, y)| > 2c/

√
5β.
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Then, we have that γ(x, y) = ∑m
i=1 |Γi(x, y)| > 0.89p1p2m2c/

√
5β >

3 max
{

r, c log
(2

ε

)}
> Ψ since m = dβ max{r/c, log(2/ε)}e and β =

15/(p1p2)
2. Thus, the second part of Theorem 4.5 follows.

Before proving the claims in Lemmas 4.7-4.9, we introduce three
technical lemmas. Lemma 4.4 gives a load bound on a balls and bins
problem by using the bounded differences method to manage depen-
dent random variables. Lemma 4.5 bounds the probability of a sum of
{−1, 1} random variables to be in a specified interval after a modular
operation. Finally, Lemma 4.6 gives a lower bound on the tail distribu-
tion of the sum of {−1, 1} random variables by leveraging the Berry-
Esseen theorem.

Lemma 4.4. Consider p balls thrown uniformly and independently at ran-
dom into q bins, with p ≥ q. For every α > 0 with probability at least
1− ε, there are more than q

(
1− e−α −

√
log(1/ε)/(2q)

)
bins with at least

(p/q)
(
1−

√
2αq/p

)
balls.

Proof. For every i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, define the following
random variable:

Xi,j =

{
1 if ball i landed in bin j
0 otherwise

Let also Xj = ∑i∈[p] Xi,j be the number of balls in the jth bin; the ex-
pected value of Xj is µ = p/q for each j. Since the balls are thrown
independently a Chernoff bound gives:

Pr
[

Xj ≤ µ
(

1−
√

2α/µ
)]
≤ e−α

Consider now the random variable Yj:

Yj =

{
1 if Xj > µ

(
1−

√
2α/µ

)
0 otherwise

Let Y = ∑
q
j=1 Yj; we use YY1,..,Yq to denote the actual value of Y with

the specified values. Since there is dependency among the Yj, we use
the method of bounded differences [52] to bound the tail distribution,
instead of a Chernoff bound. The random variable Y satisfies the Lips-
chitz property with constant 1, that is:

|YY1,...,Yi,...,Yq −YY1,...,Y′i ,...,Yq
| = |Yi −Y′i | ≤ 1
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whenever Yi 6= Y′i for every i ∈ {1, . . . , q}. By the method of bounded
differences [52, Corollary 5.2], we get Pr [Y ≤ E[Y]− t] ≤ e−2t2/q, and
then Pr [Y > E[Y]− t] ≥ 1 − ε if t =

√
(q/2) log(1/ε). Since E[Y] ≥

q
(
1− Pr

[
Xj ≤ µ

(
1−

√
2α/µ

)])
≥ q (1− e−α) , the claim follows.

Lemma 4.5. Consider a sequence s1, . . . , sk of independent and evenly dis-
tributed random variables in {1,−1}, and an arbitrary value q ∈ N. Let
S = ∑k

i=1 si and Sq = S mod∗ q. Then for all values a, b such that
0 ≤ a < b ≤ dq/2e and b− a ≥ q/3, we have:

Pr[|S| ≥ a]
2

< Pr[a ≤ |Sq| < b] < Pr[|S| ≥ a]. (4.2)

Proof. Let k′ = k/q and assume for the sake of simplicity that k′ is an
integer, and that q, b and a are even (the proof extends to the general
case with minor adjustments). We define the following four quantities:

H1= ∑k′−1
`=0 Pr [`q + a ≤ |S| < `q + b] ;

H2= ∑k′−1
`=0 Pr [`q + b ≤ |S| ≤ (`+ 1)q− b] ;

H3= ∑k′−1
`=0 Pr [(`+ 1)q− b < |S| ≤ (`+ 1)q− a] ;

H4= ∑k′−1
`=0 Pr [(`+ 1)q− a < |S| < (`+ 1)q + a] .

Standard computations show that: Pr[a ≤ |Sq| < b] = H1 + H3 and that
Pr[|S| ≥ a] = H1 + H2 + H3 + H4. We then have that Pr[a ≤ |Sq| < b] <
Pr[|S| ≥ a], and the right side of the inequality in (4.2) follows.

We now focus on the other side of the inequality. We prove that
H1 ≥ H2 + H4. The random variable S has value i, with i ∈ [−k, k] if
there are (k + i)/2 terms set to +1 and (k− i)/2 terms set to −1. If k + i
is odd, this cannot happen and hence Pr[S = i] = 0. On the other hand,
if k + i is even, we have Pr[S = i] = ( k

(k+i)/2)
1
2k since the si terms are

independent and evenly distributed. Note that Pr[S = i] is decreasing
for even values of i.

Let us define [ α
β/2] to ( α

β/2) if β is even and to 0 if β is odd: we thus

have Pr[S = i] = [ k
(k+i)/2] for any even/odd i. Let β ≥ α and γ ≥ 1, we

have the following property:[
α

β/2

]
+

[
α

(β + 1)/2

]
>

[
α

(β + γ)/2

]
+

[
α

(β + γ + 1)/2

]
.
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The correctness of the property follows from the fact that there is exactly
one non zero term on each side of the inequality by definition of [ α

β/2],
and the non zero one on the right is decreasing in γ.

We then have, for any integer ` ≥ 0, that :

Pr[a + `q ≤ |S| < b + `q] = 2
b+`q−1

∑
j=a+`q

[
k

(k+j)
2

]
1
2k

≥ 2
a+(`+1)q−2b

∑
j=a+`q

[
k

(k+j)
2

]
1
2k

+ 2
a+(`+1)q−2(b−a)−1

∑
j=a+(`+1)q−2b+1

[
k

(k+j)
2

]
1
2k ,

where the step follows by the initial assumption (b− a) ≥ q/3. By using
the above property of [ α

β/2], we shift the indexes of the above summations
(we add b− a to the first sum and 2(b− a) to the second one):

Pr[a + `q ≤ |S| < b + `q]

>2
(`+1)q−b

∑
j=`q+b

[
k

(k+j)
2

]
1
2k + 2

(`+1)q+a−1

∑
j=(`+1)q−a+1

[
k

(k+j)
2

]
1
2k

≥Pr[`q + b≤|S|≤(`+ 1)q− b]
+ Pr[(`+ 1)q− a<S<(`+ 1)q + a]

≥H2 + H4.

(Note that the derivation requires some adjustments when q, b or a are
not even). Therefore, Pr[|S| ≥ a] = H1 + H2 + H3 + H4 < 2(H1 + H3) ≤
2 Pr[a ≤ |Sq| < b]. The left side of the inequality in (4.2) follows.

Lemma 4.6. Let S = ∑k
i=1 si, where the si terms are independent and unbiased

random variables in {−1,+1}, and let α > 0 be any arbitrary value. Then,

Pr[|S| ≥ α
√

k] ≥ 2α√
2π(α2 + 1)eα2/2

− 1

2
√

k
.

Proof. We observe that E[si] = 0, σ2 = E[s2
i ] = 1 and ρ = E[|si|3] = 1.

By the Berry-Esseen theorem [23], we have that the random variable
Q = S/(

√
kσ) = S/

√
k can be approximate by a standard normal dis-

tribution N (0, 1) with error

|Pr[Q ≤ x]−Ψ(x)| ≤ Cρ

σ3
√

k
,
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where Ψ(x) is the cumulative distribution function of the standard
normal distribution N (0, 1) and C is a suitable constant smaller than
1/2 [109]. The above inequality can be rewritten as

|Pr[Q > x]−Ψc(x)| ≤ 1

2
√

k
,

with Ψc(t) = 1−Ψ(x). We then get

Pr[|S| ≥ α
√

k] = 2 Pr[S ≥ α
√

k]
= 2 Pr[Q ≥ α]

≥ 2Ψc(α)− 1

2
√

k
.

Since Ψc(x) ≥ x/(
√

2π(x2 + 1)ex2/2) (See e.g. [48, 3]), the lemma fol-
lows by inserting the bound for Ψc(x).

We are now ready to prove the three claims used in the proof of
Theorem 4.5 for c = Ω (1).

Lemma 4.7 (Claim 3). With probability at least 1− ε/2, the number of dense
rows in M′ is at least p1m, with p1 = 0.9.

Proof. Matrix M′ is obtained by performing δ random updates per col-
umn independently and uniformly distributed. The number of updates
ui affecting row m′i is distributed as the number of balls in a bin after
randomly throwing δD(x, y) balls into m bins. By applying Lemma 4.4
with α = 3, it follows that, with probability at least 1− ε/2, there are
more than

m′ ≥ (1− 1/e3 −
√

log(2/ε)/(2m))m ≥ p1m

rows where

ui ≥
δD(x, y)

m

(
1−

√
6m

δD(x, y)

)

≥ 4δD(x, y)
5m

as soon as c ≥ 5
√

6β + 1 (which is true under the initial hypothesis

c ≥
√

5β/(4p2
2)). These m′ rows are then dense.
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Lemma 4.8 (Claim 4). If m′i is dense, then |Γi(x, y)| > 2c/
√

5β with proba-
bility at least p2 = 0.094.

Proof. Let K = 2c/
√

5β(1 + 1/
√

β) and assume that the inequality
|m′i(x′ − y′) mod∗ cmod| ≥ K holds. Then, the lemma follows by ap-
plying (4.1):

|Γi(x, y)| > |m′i(x′ − y′) mod∗ cmod| − cdiv

≥ K− cdiv

= c/(
√

5β) + 2c/
√

5β− cdiv

= 2c/
√

5β.

We now show that the above inequality holds (i.e., |m′i(x′ −
y′) mod∗ cmod| ≥ K). The inner product m′i(x′ − y′) can be rewritten
as ∑ui

j=1 σj(x′− y′) f (j), where f (j) is the position in m′i affected by the jth
update. Since (x′− y′) has entries in {−1, 1} and the σj are independent,
m′i(x′ − y′) has the same density function as S = ∑ui

j=1 σj. Then,

Pr[|M′i(x′ − y′) mod∗ cmod| ≥ K]
= Pr[|S mod∗ cmod| ≥ K]

>
Pr[|S| ≥ K]

2
,

where the last step follows by applying Lemma 4.5 with a = K,
b = cmod/2 and q = cmod (note that b − a ≥ cmod/3). To lower
bound Pr[|S| ≥ K], we apply Lemma 4.6 with α = 1 + 1/

√
β since

K ≤ √ui(1 + 1/
√

β). Hence,

Pr[|S| ≥ K]
2

≥ Pr[|S| ≥ (1 + 1/
√

β)
√

ui]

2

≥ 1 + 1/
√

β
√

2π((1 + 1/
√

β)2 + 1)e(1+1/
√

β)2/2
− 1

4
√

ui

≥ p2,

where the last step follows by observing that
√

ui ≥ 2c/
√

5β ≥ 1/p2,
and then by numerically evaluate the resulting bound.

Lemma 4.9 (Claim 5). With probability at least 1 − ε, there are at least
0.89p1p2m rows such that |Γi(x, y)| > 2c/

√
5β.
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Proof. By Lemma 4.7, there are m′ ≥ p1m dense rows with probability
1 − ε/2. For each dense row, let Yi be a random variable sets to 1 if
|Γi(x, y)| > c/

√
β, and 0 otherwise. By the previous Lemma 4.8, we

have that Pr[Yi = 1] ≥ p2. Let Y = ∑m′
i=1 Yi. Since the Yi are independent

and E[Y] = p2m′, a Chernoff bound gives:

Pr
[

Y < p2m′
(

1−
√

2 log(2/ε)/(p2m′)
)]
≤ ε/2.

By plugging in the actual values of variables, we have Pr[Y <
0.89p1p2m] ≤ ε/2.

Therefore, by an union bound there are at least p1m dense rows and
at least 0.89p1p2m of them satisfy |Γi(x, y)| > c/

√
β.

4.4.2 A filter with point-wise error

A distance sensitive approximate membership filter with point-wise er-
ror is obtained by just storing the n signatures of the points in S. We
have the following theorem:

Theorem 4.6. There exists a (r, c, ε)-distance sensitive approximate member-
ship filter with point-wise error which requires

O

(
n

(
r

(c− 1)
+

(
c

c− 1

)2

log
(n

ε

)))

bits for any c > 1 on a set S of n points. When c ≥ 2, the fil-
ter uses O

(
n
( r

c + log
(n

ε

)))
bits, and it is optimal if r/c ≥ log(n/ε) or

ε ≤ 1/n1+o(1).

Proof. We assume a shared source of randomness that can be used to
recover the random matrix M without storing it. Consider the n signa-
tures of points in S constructed with error ε′ = ε/n. By an union bound,
the n signatures give a false positive with probability ε. Since each sig-
nature requires O

(
r

(c−1) +
( c

c−1

)2 log
(n

ε

))
bits by Theorem 4.5, the first

part of the claim follows. The optimality with c ≥ 2 of the filter follows
from Theorem 4.3.
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4.4.3 A filter with average error

The point-wise error filters are of course valid average error filters, but
in this setting we can also construct space efficient filters with a c = 1
approximation factor. Define Qr-far = {x ∈ {0, 1}d | D(x, S) ≥ r} and
similarly Q(r; cr)-far = {x ∈ {0, 1}d | r ≤ D(x, S) ≤ cr}.

By setting c = r in the point-wise filter, we obtain an average er-
ror filter with c = 1 which matches the Ω (n log(1/ε)) lower bound of
Theorem 4.2 for small r. Interestingly, this space bound shows that it is
possible to support distance sensitive membership queries in the aver-
age error setting with the asymptotic space bound of a Bloom filter.

Theorem 4.7. Let r ≤
√

d, n ≤ 2d/3 and ε ≥ 1/2d−2. Then, there exists an
optimal (r, 1, ε)-distance sensitive approximate membership filter with average
error which requires O (n log(1/ε)) bits on a set S of n points.

Proof. Let us consider a (r, r, ε/4)-filter F with point-wise guarantees.
The amount of false positives accepted by F is P ≤ (ε/4)|Qr2-far| +
|Q(r; r2)-far|. We have |Q(r; r2)-far| ≤ nr2( d

r2) ≤ (ε/4)2d since d ≥ r2, n ≤
2d/3 and ε ≥ 4/2d/2. Trivially, we also have that |Qr2-far| ≤ 2d. We see
that P ≤ ε2d−1.

Now note that |Qr-far| ≥ 2d − nr(d
r) ≥ 2d−1 by d ≥ r2 and n ≤ 2d/3.

We combine the two bounds to see P ≤ ε2d−1 ≤ ε|Qr-far|. The opti-
mality of F follows from Theorem 4.2 since r2/d < 1 and n log(1/ε) is
a lower bound.

4.5 Conclusion

To the best of our knowledge, this is the first time upper and lower space
bounds are given for the problem of distance sensitive filters without
false negatives. We have introduced distance sensitive signatures for
Hamming vectors and used them to derive filters with point-wise and
average errors. The proposed filters are optimal under certain assump-
tions, but it is an open question to close the gap without these assump-
tions, specifically when ε is large.

Another interesting research direction is to investigate trade-offs be-
tween space and query time: our filter requires reading all signatures
at query time and it is not clear to which extent the query time can be
improved.



Chapter 5

Fast Nearest Neighbor Preserving
Embeddings

In this Chapter we show an analogue to the Fast Johnson-Lindenstrauss
Transform for Nearest Neighbor Preserving Embeddings in `2. These
are randomized embeddings that preserve the (approximate) nearest
neighbors for a set of points. The dimensionality of the embedding
space is bounded not by the size of the embedded set n, but by its dou-
bling dimension λ. For most large real-world datasets this will mean
a considerably lower-dimensional embedding space than possible when
preserving all distances. However the embedding is slow since it re-
quires multiplication with a dense matrix. To reduce the embedding
time we propose a sparse mapping. The resulting embeddings can be
used with existing approximate nearest neighbor data structures to yield
speed improvements.

5.1 Introduction

Many algorithmic problems become overwhelmingly difficult in high-
dimensional settings. One way of trying to combat this problem is to
discover mappings that preserve the metric relevant to solving a given
problem, while embedding it into a lower dimensional setting. Most
famously Johnson and Lindenstrauss [74] showed the lemma:

Lemma 5.1 (JL-Lemma [74]). For any integer d > 0, and any ε > 0, δ ∈
(0, 1/2), for k = Θ(ε−2 log(1/δ)) there exists a distribution Π such that for
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k× d matrices M ∼ Π, for any x ∈ Rd,

Pr [(1− ε)‖x‖2 ≤ ‖Mx‖2 ≤ (1 + ε)‖x‖2] > 1− δ

The JL-Lemma shows the existence of an embedding of any set
S ⊆ Rd into k = O

(
log |S|ε−2) dimensions while preserving `2 dis-

tances up to a multiplicative (1± ε) distortion. Proofs can be found for
many different M [57, 74, 50, 4], including Gaussian matrices [74, 50]
and {0,±1} matrices [4]. In fact we might use any sub-gaussian dis-
tribution to fill the matrix [73]. These low-dimensional embeddings can
be used to speed up many fundamental high-dimensional problems like
closest pair, nearest neighbor or minimum spanning tree. They can also
be used to decrease the storage requirements of a dataset when we only
need to preserve norms. Further discussion and examples can be found
for instance in [110, 69]. It is known that if we want to preserve the norm
for all x ∈ S, the embedding dimension k = O(log |S|ε−2) is optimal,
see [82, 81].

However it might not be necessary to preserve norms for all all points
in S. If for example we are interested in nearest neighbor queries we
require only that neighbors remain close to each other, while far away
points do not get too close. This idea was introduced and formalized as
Nearest Neighbor Preserving Embeddings by Indyk and Naor [73], who
also presented an embedding. Using a full Gaussian matrix they showed
that nearest neighbor distance can be preserved while embedding into
fewer dimensions than in the distance preserving setting. Specifically,
k is O(ε−2 log λS log(2/ε)) where λS is the doubling constant of S. By
removing the requirement that all distances be preserved we can get k
smaller than in the bounds discussed above [82, 81, 10].

Another line of research has focused on improving the speed of
the embeddings by using sparse matrices while keeping the distortion
low [75, 49, 4, 9]. Call f < 1 the sparsity parameter1. If each entry in the
used matrix is 0 with probability 1− f we can improve the embedding
time from O(dk) to expected time O(dk f ) by sparse matrix multiplica-
tion. A classic sparse matrix construction is the Fast Johnson Linden-
strauss Transform (FJLT) Φ : Rd → Rk [9]. In this chapter we show
that the FJLT is in fact a Nearest Neighbor Preserving embedding with
k = O(ε−2 log λS log(2/ε)) and sparsity parameter f = O(log2 n/d) for
O
(

d log d + ε−2 log3 n
)

evaluation time.

1Normally q is used for this, but in this dissertation we reserve q for query points
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5.2 Preliminaries

Definition 5.1 (Nearest Neighbor Preserving Embeddings [73]). Let
ε, δ ∈ (0, 1), and let S be a set of points in Rd. For any point x ∈ S
let x′ denote the point closest to x in S \ {x} under the `2 norm. We say
that an embedding Φ : Rd → Rk is nearest neighbor preserving with
parameters (ε, δ) if for every x ∈ S, the following properties hold with
probability at least δ:

1. min
z∈S\{x}

‖Φx−Φz‖2 ≤ (1 + ε)‖x− x′‖2, and

2. ∀y ∈ S:
If ‖x− y‖2 > (1+ 2ε)‖x− x′‖2 then ‖Φx−Φy‖ > (1+ ε)‖x− x′‖2.

Definition 5.2 (Fast Johnson-Lindenstrauss Transform [9]). Let an em-
bedding Φ be defined by a k× d matrix Φ := PHD as follows: D is a ran-
dom ±1 diagonal d× d matrix, H is the d-dimensional Walsh-Hadamard
transform, and P is a k× d matrix with entries

pij =

{
X ∼ N (0, f−1) w.p. f
0 w.p. 1− f

.

Here f is the expected fraction of non-zero entries, called the sparsity
parameter of the FJLT2.

Definition 5.3 (Doubling constant λS). The doubling constant λS of a
point set S ⊆ Rd is defined to be the smallest integer λ such that for
every x ∈ S, and every r > 0, the point set B(x, r) ∩ S can be covered by
at most λ balls B(z, r/2) where z ∈ S. We refer to log2 λS as the doubling
dimension of S.

5.3 Fast Nearest Neighbor Preserving Embeddings

Given the definitions above let us state the claim:

Theorem 5.1 (Fast Nearest Neighbor Preserving Embeddings). For any
S ⊆ Rd, ε ∈ (0, 1) where |S| = n and δ ∈ (0, 1/2) for some

k = O
(

log (2/ε)

ε2 log (1/δ) log λS

)
2We typeset the three matrices with bold to avoid confusion with the definitions of

D and H already in use
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there exists a nearest neighbor preserving embedding Φ : Rd → Rk with
parameters (ε, 1− δ) requiring expected

O
(

d log(d) + ε−2 log3 n
)

operations.

By picking δ we can fix the probability of successfully sampling an
embedding that is nearest neighbor preserving and close to the expected
number of operations. Indyk and Naor presents a proof for embeddings
that are constructed using full k× d Gaussian matrices G (see [73, The-
orem 4.1]). Requiring O(kd) operations to embed each point. Our con-
tribution will be to show how their techniques can be applied to sparse
embeddings. We first identify the properties of a map that are sufficient
for the Indyk-Naor proof to hold, and then construct sparse embeddings
exhibiting the properties with a bounded probability of error.

Definition 5.4. Let ε ∈ (0, 1). We say that a distribution over maps
Φ = PHD : Rd → Rk satisfies the Indyk-Naor property for a set S ⊆ Rd

with error η ≥ 0 if with probability 1− η over the choice of D, the map
satisfies that for all x ∈ S, y ∈ S ∪ {0}

(P1) PrP[‖Φ(x− y)‖2 6∈ (1± ε)‖x− y‖2] ≤ e−Ω(kε2), and

(P2) PrP[‖Φx‖2 ≤ ε‖x‖2] ≤ (3ε)k.

Note that the above probabilities are taken only over the choices of P.

By bounding η with a constant < 1 we will then be able to extend
the proof presented by Indyk and Naor to show the correctness of The-
orem 5.1. We will then need to increase k by a corresponding constant
to make up for the η loss, but the order of k remains unchanged.

We will show that the FJLT[9] satisfies the Indyk-Naor properties.
The first property to satisfy is the normal Johnson-Lindenstrauss prop-
erty, but it is required to hold also for all difference vectors possible from
S. The second property is stronger, when ε� 1/3. We will be referring
to P1 and P2 as the Distortion and Shrinkage bound respectively.
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5.3.1 Smoothness

Before we show the two properties from Definition 5.4 we will bound the
probability of the diagonal matrix D being in a “smooth” setting. Our
later proofs of the Distortion and Shrinkage bounds will be conditioned
on this. We call a vector x ∈ Rd s-smooth if ‖x‖∞ ≤ s ‖x‖2. Note that
since H and D are isometries ‖HDx‖2 = ‖x‖2.

Definition 5.5. For any s > 0 we say that a given diagonal matrix D is
in an s-smooth setting if

∀x, y ∈ S ∪ {0}, ‖HD(x− y)‖∞ ≤ s‖x− y‖2.

In this section we will bound the probability of D not being in an

s-smooth setting for s = O
(√

log n
d

)
, and then in Section 5.3.3 and 5.3.4

we show how the Distortion and Shrinkage bounds follow from smooth-
ness.

Let us first consider a single vector z = (x− y) where x, y ∈ S ∪ {0}.
Assume ‖HDz‖∞ ≥ s‖z‖2 then there is some entry 1 ≤ i ≤ d such that
|(HDz)i| ≥ s‖z‖2. Let b = 1

‖z‖2
, then |(HDz)ib| ≥ s and

Pr[‖HDz‖∞ ≥ s‖z‖2] = Pr[‖HDzb‖∞ ≥ s]

where zb is a unit vector. So without loss of generality we can focus on
unit vectors:

Lemma 5.2. Given a unit vector x in Rd, for any s > 0

Pr[‖HDx‖∞ ≥ s] ≤ 2de−s2d/2.

Proof. See [9] or [89](p.69). In short let u = HDx = (u1, .., ud)
T, so

u1 = ∑d
i hixi where the hi are i.i.d. uniformly from {d−1/2,−d−1/2}. We

use:

E[esdu1 ] =
d

∏
i

E[esdhixi ] =
d

∏
i

1
2
(es
√

dxi + e−s
√

dxi)

≤ exp(s2d
d

∑
i=1

x2
i /2)

= es2d‖x‖2
2/2

In a standard Chernoff bound (See Section 1.2).
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As a small contribution we now show a slightly better bound for our
setting based on approximating the Kinchine inequality constants. We
use the fact that s will be bounded away from 0 like Ω(d−1/2).

Lemma 5.3. Given cs > 2 and a unit vector x in Rd, for s ≥
√

cs/d

Pr[‖HDx‖∞ ≥ s] ≤ de−s2d ln( cse
cs+1 )/2.

Proof. Let u = HDx = (u1, .., ud)
T, so u1 = ∑d

i hixi where the hi are i.i.d.
uniformly from {d−1/2,−d−1/2}. Let ±xi denote a uniformly random
variable from {xi,−xi}. For all p ≥ 1 by Markov’s inequality:

Pr[|u1| ≥ s] = Pr

[∣∣∣∣∣ d

∑
i=1
±xi

∣∣∣∣∣
p

≥ (
√

ds)p

]
≤

E
[∣∣∣∑d

i=1±xi

∣∣∣p]
(
√

ds)p
(5.1)

By the Kinchine inequality there is some constant Bp such that:

E

[∣∣∣∣∣ d

∑
i
±xi

∣∣∣∣∣
p]
≤ Bp‖x‖p

2

For p > 2 Haagerup [64] showed that Bp = 2(p−2)/2 Γ( p+1
2 )

Γ(3/2) (See

also [91]). Since Γ(3/2) =
√

π
2 we can simplify this to

Bp = 2
p
2

Γ( p+1
2 )√
π

.

Now we use that for x > 1, Γ(x) ≤ xx−1/2

ex−1 [84]:

Bp ≤
√

2
p

√
π

( p+1
2 )(

p+1
2 )−1/2

e(
p+1

2 )−1

=

√
p + 1p

√
π
√

ep−1

=

√
e
π

√
p + 1

e

p

≤
√

p + 1
e

p

Plugging back into 5.1 we have:

Pr[|u1| ≥ s] ≤
√

p + 1
es2d

p



5.3. Fast Nearest Neighbor Preserving Embeddings 83

We now set p = s2d to get:

Pr[|u1| ≥ s] ≤
(

1
e
+

1
es2d

)s2d/2

(5.2)

Which gives the result when we use the constraint on s.

5.3.2 Fixing s and f

Now let s = d−1/2
√

c ln(n2d). We want to set c as small as possible,
but such that D is in an s-smooth setting with probability at least 19

20 .
Using lemma 5.2 as in [9] we can get c = 8, but using lemma 5.3 with
cs = c ln(n2d) for x 6= y we get:

Pr[∃x, y ∈ S ∪ 0, ‖HD(x− y)‖∞ ≥ s‖x− y‖2] ≤
n2d

ec ln(n2d) ln( cse
cs+1 )/2

= e−c ln( cse
cs+1 )/2 .
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Figure 5.1: Bounds from
lemma 5.2 and 5.3

Which evaluates to below 19/20 for c = 7, even
if we only assume ln(n2d) ≥ 1. Figure 5.1 shows a
comparison between lemma 5.2 and lemma 5.3 if we
assume ln(n2d) ≥ 10.

In the following we will let Φ be a FJLT embedding
constructed by setting f = min

(
c′s2, 1

)
where c′ > 0

is some universal constant. We will then show that
if D is s-smooth, this setting of f makes Φ = PDH
satisfy the distortion and shrinkage bounds.

5.3.3 Distortion bound

Lemma 5.4 (Distortion bound). For any x, y ∈ S ∪ {0} if D is in an s-
smooth setting, for ε > 0:

Pr [‖Φ(x− y)‖2 /∈ (1± ε)‖x− y‖2] ≤ e−Ω(kε2)

Proof. The distortion bound is the main result in [9].
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5.3.4 Shrinkage bound

The shrinkage bound is stronger than the distortion bound for large ε.
We will need it later to confine the probability of any of an infinite series
of events happening to a small constant.

Lemma 5.5 (Shrinkage bound). For a fixed vector x ∈ S, if D is in an
s-smooth setting, for ε ∈ (0, 1):

Pr
P
[‖PHDx‖2 ≤ ε‖x‖2] ≤ (3ε)k

Following [9] we rewrite ‖PHD‖2 as ∑k
i=1 yi. Here yi ∼

N (0, f−1)biui where bi is 1 w.p f and 0 otherwise and u = HDx. De-
fine a random variable Zi = biu2

i and we see that yi = N (0, Zi/ f ).
By the regular scaling of Gaussian with their standard deviation (See
Lemma A.2), it is clear that for an upper bound on:

Pr[
k

∑
i

y2
i ≤ t]

we only need to lower bound the Zi. I.e.

Lemma 5.6. If ∀i ∈ [k] Zi ≥ f /2 and G is a full Gaussian matrix (entries
sampled from N (0, 1)), then ∀t ≥ 0:

Pr[‖PHDx‖2
2 ≤ t] ≤ Pr[‖Gx‖2 ≤ 2t]

Proof. For i ∈ {1, · · · , k} assume Zi ≥ f
2 and let Xi ∼ N (0, 1), then:

Pr
[
‖PHDx‖2

2 ≤ t
]
= Pr

[
k

∑
i=1

y2
i ≤ t

]

≤ Pr

∑
(√

1
2

Xi

)2

≤ t

 = Pr
[
∑ X2

i ≤ 2t
]

.

Where the first equality follows the rewriting above and the inequality
from the bound on the Zi.

In the s smooth setting the most extreme concentration permitted
still implies that Zi ∼ B(s−2, f )s2 (See [9]). So Pr [∀i ∈ [k], Zi ≥ f /2] ≥
19
20 (Lemma 3 of [9]). If we combine this bound with Lemma 5.6 we are
ready to prove Lemma 5.5.
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Proof. Let z ∈ S and let x = z‖z‖−1
2 .

Pr [‖PHDz‖2 ≤ ε‖z‖2] = Pr [‖PHDx‖2 ≤ ε] =

Pr
[
‖PHDx‖2

2 ≤ ε2
]
≤ Pr

[
k

∑
i

X2
i ≤ 2ε2

]
(by Lemma 5.6)

Where Xi ∼ N (0, 1). In general for s, t > 0 we know:

Pr

[
k

∑
i

X2
i ≤ t

]
= Pr

[
e−s ∑ X2

i ≥ e−st
]
≤

E
[
e−s ∑ X2

i

]
e−st

= est
k

∏
i=1

E
[
e−sX2

i

]
= est(1 + 2s)−k/2

Where the last step uses that E
[
e−sX2

i

]
= 1√

1+2s
for −1/2 ≤ s ≤

∞.(See [50])
Now to minimize we differentiate w.r.t s:

test(1 + 2s)−
k
2 + 2(− k

2
)est(1 + 2s)−

k
2−1 = 0⇔ t = k(1 + 2s)−1

⇒ s = (k/t− 1)/2

So est(1 + 2s)−k/2 = e(k−t)/2(k/t)−k/2 = e−t/2( k
et )
−k/2 ≤ (et)k/2.

Now plug in t = 2ε2 and we have

Pr

[
k

∑
i

X2
i ≤ 2ε2

]
≤ (2eε2)k/2 ≤ (3ε)k

5.3.5 Embedding properties

We have now seen how the Distortion and Shrinkage bounds follow
from two events:

First D must be in an s-smooth setting. Secondly all Zi must be
within a constant factor of f . By Lemma 5.3 the first event happens

with probability at least 19/20 when setting s =
√

7 lg(n2d)
d , assuming

n2d ≥ 3.7. By choosing f corresponding to s as in[9], the second event
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r1
r2

r3

Figure 5.2: An illustration of the spanning tree construction used in the
proof of Theorem 5.2.

occurs with probability at least 19/20(See Lemma 3 of [9]). For the
chosen parameters Φ = PHD satisfies the Indyk-Naor properties with

probability
(

19
20

)2
> 9/10.

We can then move on to prove Theorem 5.1 by showing:

Theorem 5.2 (Fast Nearest Neighbor Preserving Embeddings). For any
S ⊆ Rd, ε, δ ∈ (0, 1) and some

k = O
(

log (2/ε)

ε2 log (1/δ) log λS

)
.

Let Φ = PHD be a FJLT matrix with expected

O
(

d log(d) + ε−2 log3(n) log(2/ε)
)

embedding time. For every x ∈ S let x′ denotes the point closest to x in S \ {x}
under `2. With probability at least δ

1. min
z∈S\{x}

‖Φx−Φz‖2 ≤ (1 + ε)‖x− x′‖2, and

2. if ‖x − y‖2 > (1 + 2ε)‖x − x′‖2 for some y ∈ S then ‖Φx − Φy‖ >
(1 + ε)‖x− x′‖2.
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Proof. Let Φ = PHD follow Definition 5.2 with f =
min{O(d−1 ln(n2d)), 1} so Φ satisfies the Indyk-Naor properties as
pr. Definiton 5.4 with probability at least 9/10. The proof then follows
from [73, Theorem 4.1]. For completeness we include an extended
version of the proof here. For familiar readers, the only difference in
this version is in making the spanning tree construction explicit.

Without loss of generality let x = 0 and ‖x′‖2 = 1. To show the
first property let y ∈ S satisfy ‖y‖2 = 1, then by the distortion bound,
Pr[‖Φy‖ ≥ (1 + ε)] ≤ e−Ω(kε2). So for some universal constant C > 0,
setting k ≥ C ln(1/δ)/ε2 we get:

Pr[ min
z∈S\{x}

‖Φx−Φz‖2 > (1 + ε)‖x− x′‖2] < δ/2

To show the second property we construct a spanning tree of
(S \ B(x, 1 + 2ε))∪ {0} with 0 at the root. Let ri = 1+ (i+ 2)ε. Consider
the annuli:

Ai = S ∩ B(0, ri+1) \ B(0, ri), for i ≥ 1

By the definition of λS, for any i we can construct a minimal set Si ⊆ S
such that Ai ⊆ ∪t∈Si B(t, ε/4) and |Si| ≤ log2(

4ri
ε ). The first level of the

tree consists of an edge between x and each t ∈ Si for all i ≥ 0. From
each t a spanning tree is build on the points in B(t, ε/4) with t at the
root, as described in lemma 5.7. Figure 5.2 illustrates the construction.
Some ordering is imposed on the t points so points in overlapping balls
are only spanned once.

We can then restate the second property as ∃i ≥ 0, ∃x ∈ Ai.‖Φx‖ ≤
1 + ε, at least one of two events took place:

1. ∃i ≥ 0, ∃t ∈ Si.‖Φt‖2 ≤ 1 + ε + ε
4(1 +

√
i)

2. ∃i ≥ 0, ∃t ∈ Si, ∃x ∈ B(t, ε
4) ∩ S.Φx /∈ B(Φt, (1 +

√
i) ε

4 ,)

Since ‖t‖2 ≥ ri − ε
4 there is some constant C such that:

‖Φt‖
‖t‖2

=
1 + (1 +

√
i)ε/4 + ε

1 + (2 + i)ε− ε/4
≤
{

1− ε/8 for i ≤ 1/ε2

C/
√

i for i > 1/ε2
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Fix some i. Using the distortion and shrinkage bounds:

Pr
[
∃t ∈ Si, ‖Φt‖2 ≤ 1 + (1 +

√
i)ε/4 + ε

]
≤
{

λ
log2(4ri/ε)
x e−ckε2

for i ≤ 1/ε2

λ
log2(4ri/ε)
x (3C/

√
i)k for i > 1/ε2

≤
{

e−c′kε2
for i ≤ 1/ε2

i−c′k for i > 1/ε2

For k ≥ c′′
ε2 log(2/ε) log(λS) where c′′ is some universal constant. For

the second event lemma 5.7 gives:

Pr[∃t, ∃y ∈ B(t,
ε

4
)∩S, Φy /∈ B(Φt, (1+

√
i)

ε

4
)] ≤ λ

log2(4ri/4)
x e−ck(1+i) ≤ e−c′k(1+i)

So there is some c′′′ where the first event is most likely. Hence:

Pr[∃x ∈ Ai.‖Φx‖2 ≤ 1 + ε] ≤
{

2e−c′′′kε2
for i ≤ 1/ε2

2i−c′′′k for i > 1/ε2

Summing over all the i we get:

Pr[∃i ≥ 0, ∃x ∈ Ai.‖ΦS‖2 ≤ 1 + ε] =
∞

∑
i

Pr[∃x ∈ Ai.‖Φx‖2 ≤ 1 + ε]

≤ 2
ε2 e−c′′′kε2

+ ∑
i>1/ε2

2i−c′′′k ≤ δ/2

for some k ≥ log(1/δ) c̃
ε2 log(2/ε) log(λS) where c̃ is some large

enough constant. The number of operations required for embedding
x is O(d) for the diagonal matrix D, O(d log d) for H using the Walsh-
Hadamard transform [56] and finally O (|P|) where |P| is the number of
non-zero entries. |P| ∼ B(kd, f ) so by our setting of f :

E [|P|] = kd f

= O(ε−2 log(λS) log(2/ε) log2(n))

= O(ε−2 log3(n) log(2/ε))
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Lemma 5.7. Let S be a subset of the unit ball in Rd, including 0. Then there
exists universal constants c, C > 0 such that for ε > 0 and k ≥ C log λS:

Pr[∃x ∈ S, ‖PHDx‖2 ≥ (1 + ε)] ≤ e−ck(1+ε)2
.

Proof. The proof is given in [73, Lemma 4.2]. We include a spanning
tree version here for completeness. We build a spanning tree T on S
with root 0 in the following way: Define sets for each possible level of
the tree, L0, L1, . . . ⊆ S. Let L0 = 0. To build Lj+1, for every point t ∈ Lj

let St be the minimal size set such that ∪s∈St B(t, 2−j−1) ∩ S covers all
of B(t, 2−j) ∩ S. By the definition of doubling constant we know that
|St| ≤ λS. Connect t to every point in St, if some St sets overlap only
a single connection is made to avoid cycles. Let Lj+1 = ∪t∈Lj St. We

observe that 0 < |Lj| ≤ λ
j
S.

Now let E(T) denote the edges in T. Let Ej be the subset of E(T)
with one node in Lj and the other in Lj+1, by the construction of the tree
∀e ∈ Ej we have ‖e‖2 ≤ 2−j+1. For every x ∈ S denote the unique path
from 0 to x in T by p(x) ⊆ E(T). For 0 ≤ j ≤ |p(x)| let pj(x) ∈ Lj be the
vertex on the path at level j, for j > |p(x)| let pj(x) = x. We can then
compose x as ∑∞

j=0
(

pj+1(x)− pj(x)
)
, the first |p(x)| steps corresponding

to edges in E(T), and the remaining steps having 0 contribution. The
argument then follows [73]:

Pr[∃x ∈S, ‖PHDx‖2 ≥ (1 + ε)]

≤ Pr

[
∃x ∈ S, ∃j ≥ 0, ‖PHD(pj+1(x)− pj(x))‖2 ≥

(1 + ε)

3

(
3
2

)−j
]

=
∞

∑
j=0

Pr

[
∃e ∈ Ej, ‖PHDe‖2 ≥

1 + ε

3

(
3
2

)−j
]

≤
∞

∑
j=0

Pr

[
∃e ∈ Ej, ‖PHDe‖2 ≥

1 + ε

6

(
4
3

)j
‖e‖2

]

≤
∞

∑
j=0

λ
2j
S Pr

[
‖PHDx‖2 ≥ 1 +

1 + ε

6

(
4
3

)j
− 1

]
,for any unit vector x

≤
∞

∑
j=0

λ
2j
S e−ck(1+ε)2(4/3)2j/100 ≤ e−ck(1+ε)2

For k ≥ C log λS + 1. Crucially the second last step uses that|E(T)| =
|S| − 1. We can then use Lemma 5.3 to see that D is in a smooth setting
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with constant probability, for our setting of s at least 19
20 . The last step

then follows from Lemma 5.4.

5.4 Conclusion

In this chapter we present embeddings that combine the low-
dimensional embedding space achieved by Nearest Neighbor Pre-
serving Embeddings [73] with a speedup of the embedding runtime
achieved by a Fast-JL construction [9]. This results in embeddings that
are faster than fully Gaussian Nearest Neighbor Preserving Embeddings
and use fewer dimensions than any Johnson-Lindenstrauss type embed-
ding.

The benefit of Nearest Neighbor Preserving Embeddings generally
depends on the difference between n = |S| and λS. While λS is always
upper bounded by n it can often be much smaller, this helps to explain
why some datasets can be successfully embedded into much fewer di-
mensions, and much faster, than theoretical results looking only on |S|
can explain. For datasets with low doubling dimension we can expect
to find fast embeddings into a low number of dimensions, even if the
dataset is very large.

While the number of rows in the embedding matrix is independent
of n, the sparsity of the matrix is not. This happens because we must
ensure that all O(n2) possible edges in the constructed spanning trees
used in lemma 5.7 are smooth. Future work could focus on alternative
constructions to increase the sparsity.



Chapter 6

Set Similarity Join

Set similarity join is a fundamental and well-studied database operator.
It is usually studied in the exact setting where the goal is to compute
all pairs of sets that exceed a given level of similarity (measured e.g. as
Jaccard similarity). But set similarity join is often used in settings where
100% recall may not be important — indeed, where the exact set simi-
larity join is itself only an approximation of the desired result set.

We present a new randomized algorithm for set similarity join that
can achieve any desired recall up to 100%, and show theoretically and
empirically that it significantly outperforms state-of-the-art implementa-
tions of exact methods, and improves on existing approximate methods.
Our experiments on benchmark data sets show the method is several
times faster than comparable approximate methods, at 90% recall the
algorithm is often more than 2 orders of magnitude faster than exact
methods. Our algorithm makes use of recent theoretical advances in
high-dimensional sketching and indexing that we believe to be of wider
relevance to the database community.

6.1 Introduction

It is increasingly important for data processing and analysis systems
to be able to work with data that is imprecise, incomplete, or noisy.
Similarity join has emerged as a fundamental primitive in data cleaning
and entity resolution over the last decade [16, 39, 104]. In this chapter
we focus on set similarity join: Given collections R and S of sets the task
is to compute

R ./λ S = {(x, y) ∈ R× S | sim(x, y) ≥ λ}
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where sim(·, ·) is a similarity measure and λ is a threshold parameter.
We deal with sets x, y ⊆ {1, . . . , d}, where the number d of distinct
tokens can be naturally thought of as the dimensionality of the data.

Many measures of set similarity exist [42], but perhaps the most well-
known such measure is the Jaccard similarity,

J(x, y) = |x ∩ y|/|x ∪ y| .

For example, the sets x = {IT, University, Copenhagen} and y =
{University, Copenhagen, Denmark} have Jaccard similarity J(x, y) =
1/2 which could suggest that they both correspond to the same entity.
In the context of entity resolution we want to find a set T that contains
(x, y) ∈ R× S if and only if x and y correspond to the same entity. The
quality of the result can be measured in terms of precision |(R ./λ S) ∩
T|/|T| and recall |(R ./λ S) ∩ T|/|R ./λ S| (both of which should be as
high as possible). We will be interested in methods that achieve 100%
precision, but that might not have 100% recall. We sometimes referring
to methods with 100% recall as exact, and others as approximate. Note
that this is in view of the output size, not the similarity as in our other
approximate similarity problems. Considering similarity join methods
that are not exact allow for new randomized algorithmic techniques.
It has been known from a theoretical point of view that this can lead
to algorithms that are more scalable and robust (against hard inputs),
compared to exact set similarity join methods for high-dimensional data.
However, these methods have not seen widespread use in practical join
algorithms, arguably because they have not been sufficiently mature,
e.g. having large overheads that make asymptotic gains disappear and
being unable to take advantage of features of real-life data sets that make
similarity join computation easier.

Our contributions. We present the Chosen Path Set Similarity Join
(CPSJoin) algorithm, its theoretical underpinnings, and show experi-
mentally that it achieves substantial speedup in practice compared to
state-of-the-art exact techniques by allowing less than 100% recall. The
two key ideas behind CPSJoin are:

• A new recursive filtering technique inspired by the recently pro-
posed ChosenPath index for set similarity search [44], adding new
ideas to make the method parameter-free, near-linear space, and
adaptive to a given data set.
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• Apply efficient sketches for estimating set similarity [83] that take
advantage of modern hardware.

We compare CPSJoin to the exact set similarity join algorithms in the
comprehensive empirical evaluation of Mann et al. [86], using the same
data sets, and to other approximate set similarity join methods sug-
gested in the literature. The probabilistic approach scales much better
on input instances where prefix filtering does not cut down the search
space significantly. We see speedups of more than 1 order of magni-
tude at 90% recall, especially for set similarity joins where the sets are
relatively large (100 tokens or more) and the similarity threshold is low
(e.g. Jaccard similarity 0.5).

6.1.1 Related work

Exact similarity join. For space reasons we present just a sample of
the most related previous work, and refer to the book of Augsten and
Böhlen [16] for a survey of algorithms for exact similarity join in rela-
tional databases, covering set similarity joins as well as joins based on
string similarity.

Early work on similarity join focused on the important special case
of detecting near-duplicates with similarity close to 1, see e.g. [30, 104].
A sequence of results starting with the seminal paper of Bayardo et
al. [19] studied the range of thresholds that could be handled. Recently,
Mann et al. [86] conducted a comprehensive study of 7 state-of-the-art
algorithms for exact set similarity join for Jaccard similarity threshold
λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. These algorithms all use the idea of prefix fil-
tering [19], which generates a sequence of candidate pairs of sets that
includes all pairs of similarity above the threshold. The methods differ
in how much additional filtering is carried out. For example, [115] ap-
plies additional length and suffix filters to prune the candidate pairs. The
main finding by Mann et al. is that while advanced filtering techniques
do yield speedups on some data sets, an optimized version of the basic
prefix filtering method (referred to as “ALL”) is always competitive, and
often the fastest of the algorithms. For this reason we will be comparing
our results against ALL.

Locality-sensitive hashing. Locality-sensitive hashing (LSH) is a
theoretically well-founded randomized method for creating candidate
pairs [59]. Though some LSH methods guaranteeing 100% recall ex-
ist [15, 94], LSH is usually associated with having less than 100% recall
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probability for each output pair. We know only of a few papers using
LSH techniques to solve similarity join. Cohen et al. [47] used LSH tech-
niques for set similarity join in a knowledge discovery context before
the advent of prefix filtering. They sketch a way of choosing parame-
ters suitable for a given data set, but we are not aware of existing im-
plementations of this approach. Chakrabarti et al. [36] improved plain
LSH with an adaptive similarity estimation technique, BayesLSH, that re-
duces the cost of checking candidate pairs and typically improves upon
an implementation of the basic prefix filtering method by 2–20×. Our
experiments include comparison to both methods [36, 47].

We refer to the recent survey paper [93] for an overview of theoretical
developments, but point out that these developments have not matured
sufficiently to yield practical improvements to similarity join methods.

Locality-sensitive mappings. Several recent theoretical advances in
high-dimensional indexing [13, 43, 44] have used an approach that can
be seen as a generalization of LSH. We refer to this approach as locality-
sensitive mappings (also known as locality-sensitive filters in certain set-
tings). The idea is to construct a function F, mapping a set x into a set
of machine words, such that:

• If sim(x, y) ≥ λ then F(x) ∩ F(y) is nonempty with some fixed
probability ϕ > 0.

• If sim(x, y) < λ, then the expected intersection size E[|F(x) ∩
F(y)|] is “small”.

Here the exact meaning of “small” depends on the differ-
ence λ− sim(x, y), but in a nutshell, if it is the case that almost
all pairs have similarity significantly below λ then we can ex-
pect |F(x) ∩ F(y)| = 0 for almost all pairs. Performing the similar-
ity join amounts to identifying all candidate pairs x, y for which
F(x) ∩ F(y) 6= ∅ (for example by creating an inverted index), and
computing the similarity of each candidate pair. To our knowledge
these indexing methods have not been tried out in practice, probably
because they are rather complicated. An exception is the recent pa-
per [44], which is relatively simple, and indeed our join algorithm is
inspired by the index described in that paper.

Distance estimation. Similar to BayesLSH [36] we make use of al-
gorithms for similarity estimation, but in contrast to BayesLSH we use
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algorithms that make use of bit-level parallelism. This approach works
when there exists a way of picking a random hash function h such that

Pr[h(x) = h(y)] = sim(x, y) (6.1)

for every choice of sets x and y. Broder et al. [32] presented such a hash
function for Jaccard similarity, now known as MinHash or “minwise
hashing”, as discussed in Section 1.3.6. In the context of distance esti-
mation, 1-bit minwise hashing of Li and König [83] maps t MinHash

values to a compact sketch, using just t bits. Still, this is sufficient in-
formation to be able to estimate the Jaccard similarity of two sets x and
y just based on the Hamming distance of their sketches. (In fact, the
approach of [83] is known to be close to optimal [99].) Like in [36] we
will use distance estimation to perform an additional filtering of the set
of candidate pairs, avoiding expensive exact similarity computations for
candidate pairs of low similarity.

6.2 Preliminaries

The CPSJoin algorithm solves the set similarity join problem with a
probabilistic guarantee on recall, formalized in Definition 1.5. It returns
a set L ⊆ S ./λ R in a way that for every (x, y) ∈ S ./λ R we are guar-
anteed Pr[(x, y) ∈ L] ≥ ϕ. It is important to note that the probability
is over the random choices made by the algorithm, and not over a ran-
dom choice of (x, y). This means that the probability (x, y) ∈ S ./λ R
is not reported in i independent repetitions of the algorithm is bounded
by (1 − ϕ)i. A recall probability of, ϕ = 0.9 can be boosted to recall
probability close to 1, e.g. 99.9% using t = 3 repetitions. Finally, note
that recall probability ϕ implies that we expect recall at least ϕ, but the
actual recall may be higher.

6.2.1 Similarity measures

Our algorithm can be used with a broad range of similarity measures
through randomized embeddings. This allows our algorithms to be used
with, for example, Jaccard and cosine similarity thresholds.

Embeddings map data from one space to another while approx-
imately preserving distance information, with accuracy that can be
tuned. In our case we are interested in embeddings that map data to sets
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of tokens. We can transform any so-called LSHable similarity measure
sim, where we can choose h to make (6.1) hold, into a set similarity mea-
sure by the following randomized embedding: For a parameter t pick
hash functions h1, . . . , ht independently from a family satisfying (6.1).
The embedding of x is the following set of size t:

f (x) = {(i, hi(x)) | i = 1, . . . , t} .

It follows from (6.1) that the expected size of the intersection f (x)∩ f (y)
is t · sim(x, y). We can use a Chernoff bound to bound the number of
functions necessary.

Pr

[∣∣∣∣ | f (x) ∩ f (y)|
t

− sim(x, y)
∣∣∣∣ ≥

√
6 ln t

t
sim(x, y)

]
≤ 2t−sim(x,y)

(See e.g. Equation 1.2). For our experiments with Jaccard similarity
thresholds ≥ 0.5, we found that t = 64 gave sufficient precision for
> 90% recall.

In summary we can perform the similarity join R ./λ S for any
LSHable similarity measure by creating two corresponding relations
R′ = { f (x) | x ∈ R} and S′ = { f (y) | y ∈ S}, and computing R′ ./λ S′

with respect to the similarity measure

BB( f (x), f (y)) = | f (x) ∩ f (y)|/t . (6.2)

This measure is the special case of Braun-Blanquet similarity where the
sets are known to have size t. Our implementation will take advantage
of the set size t being fixed, though it is easy to extend to general Braun-
Blanquet similarity.

The class of LSHable similarity measures is large, as discussed
in [41]. It includes the Jaccard similarity, cosine similarity and other
commonly used similarity measures. If approximation errors are tol-
erable, even edit distance can be embedded into Hamming space and
handled by our algorithm [37, 116].

6.2.2 Notation

We are interested in sets S where an element, x ∈ S is a set with el-
ements from some universe [d] = {1, 2, 3, · · · , d}. To avoid confusion
we sometimes use “record” for x ∈ S and “token” for the elements of
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x. Throughout this chapter we will think of a record x both as a set of
tokens from [d], as well as a vector from {0, 1}d, where:

xi =

{
1 if i ∈ x
0 if i /∈ x

It is clear that these representations are equivalent. The set {1, 4, 5} is
equivalent to (1, 0, 0, 1, 1, 0, · · · , 0), {1, d} is equivalent to (1, 0, · · · , 0, 1),
etc.

6.3 Overview of approach

Our high-level approach is recursive and works as follows. To compute
R ./λ S we consider each x ∈ R and either:

1. Compare x to each record in S (referred to as “brute forcing” x),
or

2. create several subproblems Si ./λ Ri with x ∈ Ri ⊆ R, Si ⊆ S, and
solve them recursively.

The approach of [44] corresponds to choosing option 2 until reaching a
certain level k of the recursion, where we finish the recursion by choos-
ing option 1. This makes sense for certain worst-case data sets, but we
propose an improved parameter-free method that is better at adapting
to the given data distribution. In our method the decision on which op-
tion to choose depends on the size of S and the average similarity of x
to the records of S. We choose option 1 if S has size below some (con-
stant) threshold, or if the average Braun-Blanquet similarity of x and
S, 1
|S| ∑y∈S BB(x, y), is close to the threshold λ. In the former case it is

cheap to finish the recursion. In the latter case many records y ∈ S will
have BB(x, y) larger than or close to λ, so we do not expect to be able to
produce output pairs with x in less than linear time in |S|.

If none of the pruning conditions apply we choose option 2 and in-
clude x in recursive sub problems as described below. But first we note
that the decision of which option to use can be made efficiently for each
x, since the average Braun-Blanquet similarity of pairs from R× S can
be computed from token frequencies in time O(|R|+ |S|).
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• Comparing x to each record of S. We speed up the computation by
using distance estimation (in our case using 1-bit minwise hashing)
to efficiently avoid exact computation of similarities BB(x, y) for
y ∈ S where B(x, y) is significantly below λ.

• Recursion. We would like to ensure that for each pair (x, y) ∈
R ./λ S the pair is computed in one of the recursive subproblems,
i.e., that (x, y) ∈ Ri ./λ Si for some i. In particular, we want the
expected number of subproblems containing (x, y) to be at least 1,
i.e.,

E[|{i | (x, y) ∈ Ri ./λ Si}|] ≥ 1. (6.3)

Let R′ and S′ be the subsets of R and S that do not satisfy any of the
pruning conditions. To achieve (6.3) for each pair (x, y) ∈ R ./λ S
we recurse with probability 1/(λt), where t is the size of records
in R and S, on the subproblem Ri ./λ Si with sets

Ri = {x ∈ R′ | i ∈ x}
Si = {y ∈ S′ | i ∈ y}

for each i ∈ {1, . . . , d}. It is not hard to check that (6.3) is satis-
fied for every pair (x, y) with BB(x, y) ≥ λ. Of course, expecting
one subproblem to contain (x, y) does not directly imply a good
probability that (x, y) is contained in at least one subproblem. But
it turns out that we can use results from the theory of branching
processes to show such a bound; details are provided in section 6.4.

6.4 Chosen Path Set Similarity Join

The CPSJoin algorithm solves the (λ, ϕ)-set similarity join problem (Def-
inition 1.5). To simplify the exposition we focus on a self-join version
where given S we wish to report L ⊆ S ./λ S. Handling a general join
S ./λ R follows the overview in section 6.3 and requires no new ideas:
Essentially consider a self-join on S ∪ R but make sure to consider only
pairs in S× R for output. We also make the simplifying assumption that
all sets in S have a fixed size t — as argued in section 6.2.1 the general
case can be reduced to this one by embedding.

The CPSJoin algorithm solves the (λ, ϕ)-set similarity join for ev-
ery choice of λ ∈ (0, 1) and with a guarantee on ϕ that we will lower
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bound in the analysis. We provide theoretical guarantees on the ex-
pected running time of CPSJoin as well as experimental results showing
large speedups compared to existing state-of-the-art exact and approxi-
mate similarity join techniques. In the experiments a single run of our
algorithm typically only reports around one third of the similar points
compared to the exact algorithms, but through independent repetitions
we are able to obtain speedups in the range of 2− 50× for many real
data sets and parameter settings while keeping the recall above 90%.

6.4.1 Description

The CPSJoin algorithm (see Algorithm 3 for pseudocode) works by re-
cursively splitting the data set on elements of [d] that are selected ac-
cording to a random process, forming a recursion tree with S at the root
and subsets of S that are non-increasing in size as we get further down
the tree. The randomized splitting has the property that the probability
of a pair of points (x, y) being in a given node is increasing as a function
of |x ∩ y|.

Before each splitting step we run the recursive BruteForce subpro-
cedure (see Algorithm 4 for pseudocode) that identifies subproblems
that are best solved by brute force. It has two parts:

1. If S is below some constant size, controlled by the parameter
limit, we report S ./λ S exactly using a simple loop with O(|S|2) dis-
tance computations (BruteForcePairs) and exit the recursion. In our
experiments we have set limit to 250, with the precise choice seemingly
not having a large effect as shown experimentally in Section 6.6.2.

2. If S is larger than limit the second part activates: for every x ∈ S
we check whether the expected number of comparisons that x is a part of
is going to decrease after performing the splitting. If this is not the case,
we immediately compare x against every point in S (BruteForcePoint),
reporting close pairs, and proceed by removing x from S. The Brute-
Force procedure is then run again on the reduced set. The recursion
exits if every point x ∈ S has a decreasing number of expected compar-
isons.

This recursive procedure where we choose to handle some points
by brute force crucially separates our algorithm from many other ap-
proximate similarity join methods in the literature that typically are
LSH-based [95, 47]. By efficiently being able to remove points at the
“right” time, before they generate too many expensive comparisons fur-
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ther down the tree, we are able to beat the performance of other approx-
imate similarity join techniques in both theory and practice. Another
benefit of this rule is that it reduces the number of parameters com-
pared to the usual LSH setting where the depth of the tree has to be
selected by the user.

Algorithm 3: CPSJoin(S, λ)

1 For j ∈ [d] initialize Sj ← ∅.
2 S← BruteForce(S, λ)
3 r ← SeedHashFunction()
4 for x ∈ S do
5 for j ∈ x do
6 if r(j) < 1

λ|x| then Sj ← Sj ∪ {x}

7 for Sj 6= ∅ do CPSJoin(Sj, λ)

Algorithm 4: BruteForce(S, λ)

Global parameters: limit ≥ 1, ε ≥ 0.
1 Initialize empty map count[ ] with default value 0.
2 if |S| ≤ limit then
3 BruteForcePairs(S, λ)
4 return ∅
5 for x ∈ S do
6 for j ∈ x do
7 count[j]← count[j] + 1

8 for x ∈ S do
9 if 1

|S|−1 ∑j∈x(count[j]−1)/t > (1− ε)λ then
10 BruteForcePoint(S, x, λ)
11 return BruteForce(S \ {x}, λ)

12 return S

6.4.2 Comparison to Chosen Path

The CPSJoin algorithm is inspired by the Chosen Path algorithm [44]
for the approximate near neighbor problem and uses the same under-
lying random splitting tree that we will refer to as the Chosen Path
Tree. In the approximate near neighbor problem, the task is to construct
a data structure that takes a query point and correctly reports an ap-
proximate near neighbor, if such a point exists in the data set. Using



6.4. Chosen Path Set Similarity Join 101

the Chosen Path data structure directly to solve the (λ, ϕ)-set similar-
ity join problem has several drawbacks that we avoid in the CPSJoin

algorithm. First, the Chosen Path data structure is parameterized in
a non-adaptive way to provide guarantees for worst-case data, vastly
increasing the amount of work done compared to the optimal parame-
terization when data is not worst-case. Our recursion rule avoids this
and instead continuously adapts to the distribution of distances as we
traverse down the tree. Second, the data structure uses space O(n1+ρ)
where ρ > 0, storing the Chosen Path Tree of size O(nρ) for every data
point. The CPSJoin algorithm, instead of storing the whole tree, essen-
tially performs a depth-first traversal, allowing us to bound the space
usage by O(n + m) where m is the output size. Finally, the Chosen

Path data structure only has to report a single point that is approxi-
mately similar to a query point, and can report points with similarity
< λ. To solve the approximate similarity join problem the CPSJoin al-
gorithm has to satisfy reporting guarantees for every pair of points (x, y)
in the exact join.

6.4.3 Analysis

The Chosen Path Tree for a data point x ⊆ [d] is defined by a random
process: at each node, starting from the root, we sample a random hash
function r : [d] → [0, 1] and construct children for every element j ∈ x
such that r(j) < 1

λ|x| . Nodes at depth k in the tree are identified by their
path p = (j1, . . . , jk). Formally, the set of nodes at depth k > 0 in the
Chosen Path Tree for x is given by

Fk(x) =
{

p ◦ j | p ∈ Fk−1(x) ∧ rp(j) <
xj

λ|x|

}
(6.4)

where p ◦ j denotes vector concatenation and F0(x) = {()} is the set
containing only the empty vector. The subset of the data set S that
survives to a node with path p = (j1, . . . , jk) is given by

Sp = {x ∈ S | xj1 = 1∧ · · · ∧ xjk = 1}. (6.5)

The random process underlying the Chosen Path Tree belongs to the
well studied class of Galton-Watson branching processes. Originally
these where devised to answer questions about the growth and decline
of family names in a model of population growth assuming i.i.d. off-
spring for every member of the population across generations [111]. In
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order to make statements about the properties of the CPSJoin algorithm
we study in turn the branching processes of the Chosen Path Tree asso-
ciated with a point x, a pair of points (x, y), and a set of points S. Note
that we use the same random hash functions for different points in S.

Brute forcing. The BruteForce subprocedure described by Algorithm
4 takes two global parameters: limit ≥ 1 and ε ≥ 0. The parameter
limit controls the minimum size of S before we discard the CPSJoin

algorithm for a simple exact similarity join by brute force pairwise dis-
tance computations. The second parameter, ε > 0, controls the sensi-
tivity of the BruteForce step to the expected number of comparisons
that a point x ∈ S will generate if allowed to continue in the branch-
ing process. The larger ε the more aggressively we will resort to the
brute force procedure. In practice we typically think of ε as a small con-
stant, say ε = 0.05, but for some of our theoretical results we will need
a sub-constant setting of ε ≈ 1/ log(n) to show certain running time
guarantees. The BruteForce step removes a point x from the Chosen
Path branching process, instead opting to compare it against every other
point y ∈ S, if it satisfies the condition

1
|S| − 1 ∑

y∈S\{x}
|x ∩ y|/t > (1− ε)λ. (6.6)

In the pseudocode of Algorithm 4 we let count denote a hash table that
keeps track of the number of times each element j ∈ [d] appears in S.
This allows us to evaluate the condition in equation (6.6) for an element
x ∈ S in time O(|x|) by rewriting it as

1
|S| − 1 ∑

j∈x
(count[j]− 1)/t > (1− ε)λ. (6.7)

We claim that this condition minimizes the expected number of com-
parisons performed by the algorithm: Consider a node in the Chosen
Path Tree associated with a set of points S while running the CPSJoin

algorithm. For a point x ∈ S, we can either remove it from S immedi-
ately at a cost of |S| − 1 comparisons, or we can choose to let continue in
the branching process (possibly into several nodes) and remove it later.
The expected number of comparisons if we let it continue k levels before
removing it from every node that it is contained in, is given by

∑
y∈S\{x}

(
1
λ

|x ∩ y|
t

)k

. (6.8)
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This expression is convex and increasing in the similarity |x ∩ y|/t be-
tween x and other points y ∈ S, allowing us to state the following ob-
servation:

Observation 6.1 (Recursion). Let ε = 0 and consider a set S containing a
point x ∈ S such that x satisfies the recursion condition in equation (6.6).
Then the expected number of comparisons involving x if we continue
branching exceeds |S| − 1 at every depth k ≥ 1. If x does not satisfy the
condition, the opposite is observed.

Tree depth. We proceed by bounding the maximal depth of the set of
paths in the Chosen Path Tree that are explored by the CPSJoin algo-
rithm. Having this information will allow us to bound the space usage
of the algorithm and will also form part of the argument for the correct-
ness guarantee. Assume that the parameter limit in the BruteForce

step is set to some constant value, say limit = 10. Consider a point
x ∈ S and let S′ = {y ∈ S | |x ∩ y|/t ≤ (1− ε)λ} be the subset of points
in S that are not too similar to x. For every y ∈ S′ the expected number
of vertices in the Chosen Path Tree at depth k that contain both x and y
is upper bounded by

E[|Fk(x ∩ y)|] =
(

1
λ

|x ∩ y|
t

)k

≤ (1− ε)k ≤ e−εk. (6.9)

Since |S′| ≤ n we use Markov’s inequality to show the following bound:

Lemma 6.1. Let x, y ∈ S satisfy that |x∩ y|/t ≤ (1− ε)λ then the probability
that there exists a vertex at depth k in the Chosen Path Tree that contains x and
y is at most e−εk.

If x does not share any paths with points that have similarity that
falls below the threshold for brute forcing, then the only points that
remain are ones that will cause x to be brute forced. This observation
leads to the following probabilistic bound on the tree depth:

Lemma 6.2. With high probability the maximal depth of paths explored by the
CPSJoin algorithm is O(log(n)/ε).
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Correctness. Let x and y be two sets of equal size t such that BB(x, y) =
|x ∩ y|/t ≥ λ. We are interested in lower bounding the probability that
there exists a path of length k in the Chosen Path Tree that has been
chosen by both x and y, i.e. Pr [Fk(x ∩ y) 6= ∅]. Agresti [6] showed
an upper bound on the probability that a branching process becomes
extinct after at most k steps. We use it to show the following lower
bound on the probability of a close pair of points colliding at depth k in
the Chosen Path Tree.

Lemma 6.3 (Agresti [6]). If sim(x, y) ≥ λ then for every k > 0 we have that
Pr[Fk(x ∩ y) 6= ∅] ≥ 1

k+1 .

The bound on the depth of the Chosen Path Tree for x explored by
the CPSJoin algorithm in Lemma 6.2 then implies a lower bound on ϕ.

Lemma 6.4. Let 0 < λ < 1 be constant. Then for every set S of |S| = n
points the CPSJoin algorithm solves the set similarity join problem with ϕ =
Ω(ε/ log(n)).

Remark 6.1. This analysis is very conservative: if either x or y is removed
by the BruteForce step prior to reaching the maximum depth then it
only increases the probability of collision. We note that similar guaran-
tees can be obtained when using fast pseudorandom hash functions as
shown in the paper introducing the Chosen Path algorithm [44].

Space usage. We can obtain a trivial bound on the space usage of
the CPSJoin algorithm by combining Lemma 6.2 with the observation
that every call to CPSJoin on the stack uses additional space at most
O(n). The result is stated in terms of working space: the total space
usage when not accounting for the space required to store the data set
itself (our algorithms use references to data points and only reads the
data when performing comparisons) as well as disregarding the space
used to write down the list of results.

Lemma 6.5. With high probability the working space of the CPSJoin algorithm
is at most O(n log(n)/ε).

Remark 6.2. We conjecture that the expected working space is O(n) due
to the size of S being geometrically decreasing in expectation as we
proceed down the Chosen Path Tree.
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Running time. We will bound the running time of a solution to the
general set similarity self-join problem that uses several calls to the CP-
SJoin algorithm in order to piece together a list of results L ⊆ S ./λ S. In
most of the previous related work, inspired by Locality-Sensitive Hash-
ing, the fine-grainedness of the randomized partition of space, here rep-
resented by the Chosen Path Tree in the CPSJoin algorithm, has been
controlled by a single global parameter k [59, 95]. In the Chosen Path
setting this rule would imply that we run the splitting step without per-
forming any brute force comparison until reaching depth k where we
proceed by comparing x against every other point in nodes containing
x, reporting close pairs. In recent work by Ahle et al. [7] it was shown
how to obtain additional performance improvements by setting an indi-
vidual depth kx for every x ∈ S. We refer to these stopping strategies as
global and individual, respectively. Together with our recursion strat-
egy, this gives rise to the following stopping criteria for when to compare
a point x against everything else contained in a node:

• Global: Fix a single depth k for every x ∈ S.

• Individual: For every x ∈ S fix a depth kx.

• Adaptive: Remove x when the expected number of comparisons is
non-decreasing in the tree-depth.

Let T denote the running time of our similarity join algorithm. We aim
to show the following relation between the running time between the
different stopping criteria when applied to the Chosen Path Tree:

E[TAdaptive] ≤ E[TIndividual] ≤ E[TGlobal]. (6.10)

First consider the global strategy. We set k to balance the contribution
to the running time from the expected number of vertices containing a
point, given by (1/λ)k, and the expected number of comparisons be-
tween pairs of points at depth k, resulting in the following expected
running time for the global strategy:

O

min
k

n(1/λ)k + ∑
x,y∈S
x 6=y

(sim(x, y)/λ)k

 .
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The global strategy is a special case of the individual case, and it must
therefore hold that E[TIndividual] ≤ E[TGlobal]. The expected running time
for the individual strategy is upper bounded by:

O

∑
x∈S

min
kx

(1/λ)kx + ∑
y∈S\{x}

(sim(x, y)/λ)kx

 .

We will now argue that the expected running time of the CPSJoin algo-
rithm under the adaptive stopping criteria is no more than a constant
factor greater than E[TIndividual] when we set the global parameters of
the BruteForce subroutine as follows:

limit = Θ(1),

ε =
log(1/λ)

log n
.

Let x ∈ S and consider a path p where x is removed in from Sp by the
BruteForce step. Let k′x denote the depth of the node (length of p) at
which x is removed. Compared to the individual strategy that removes
x at depth kx we are in one of three cases, also displayed in Figure 6.1.

1. The point x is removed from path p at depth k′x = kx.

2. The point x is removed from path p at depth k′x < kx.

3. The point x is removed from path p at depth k′x > kx.

Case 1 Case 2 Case 3

kx k′x

k′x

k′x

Figure 6.1: Path termination depth in the Chosen Path Tree
The underlying random process behind the Chosen Path Tree is not
affected by our choice of termination strategy. In the first case we there-
fore have that the expected running time is upper bounded by the same
(conservative) expression as the one used by the individual strategy. In
the second case we remove x earlier than we would have under the in-
dividual strategy. For every x ∈ S we have that kx ≤ 1/ε since for larger
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values of kx the expected number of nodes containing x exceeds n. We
therefore have that kx − k′x ≤ 1/ε. Let S′ denote the set of points in the
node where x was removed by the BruteForce subprocedure. There are
two rules that could have triggered the removal of x: Either |S′| = O(1)
or the condition in equation (6.6) was satisfied. In the first case, the ex-
pected cost of following the individual strategy would have been Ω(1)
simply from the 1/λ children containing x in the next step. This is no
more than a constant factor smaller than the adaptive strategy. In the
second case, when the condition in equation (6.6) is activated we have
that the expected number of comparisons involving x resulting from S′

if we had continued under the individual strategy is at least

(1− ε)1/ε|S′| = Ω(|S′|)
which is no better than what we get with the adaptive strategy. In the
third case where we terminate at depth k′x > kx, if we retrace the path to
depth kx we know that x was not removed in this node, implying that
the expected number of comparisons when continuing the branching
process on x is decreasing compared to removing x at depth kx. We
have shown that the expected running time of the adaptive strategy
is no greater than a constant times the expected running time of the
individual strategy.

We are now ready to state our main theoretical contribution, stated
below as Theorem 6.1. The theorem combines the above argument that
compares the adaptive strategy against the individual strategy together
with Lemma 6.2 and Lemma 6.4, and uses O(log2 n) runs of the CPSJoin

algorithm to solve the set similarity join problem for every choice of
constant parameters λ, ϕ.

Theorem 6.1. For every LSHable similarity measure and every choice of con-
stant threshold λ ∈ (0, 1) and probability of recall ϕ ∈ (0, 1) we can solve
the (λ, ϕ)-set similarity join problem on every set S of n points using working
space Õ(n) and with expected running time

Õ

∑
x∈S

min
kx

 ∑
y∈S\{x}

(sim(x, y)/λ)kx + (1/λ)kx

 .

6.5 Implementation

We implement an optimized version of the CPSJoin algorithm for solv-
ing the Jaccard similarity self-join problem. In our experiments (de-
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scribed in Section 6.6) we compare the CPSJoin algorithm against the
approximate methods of MinHash LSH [59, 32] and BayesLSH [36], as
well as the AllPairs [19] exact similarity join algorithm. The code for
our experiments is written in C++ and uses the benchmarking frame-
work and data sets of the recent experimental survey on exact similarity
join algorithms by Mann et al. [86]. For our implementation we assume
that each set x is represented as a list of 32-bit unsigned integers. We
proceed by describing the details of each implementation in turn.

6.5.1 Chosen Path Similarity Join

The implementation of the CPSJoin algorithm follows the structure of
the pseudocode in Algorithm 3 and Algorithm 4, but makes use of a few
heuristics, primarily sampling and sketching, in order to speed things
up. The parameter setting is discussed and investigated experimentally
in section 6.6.2.

Preprocessing. Before running the algorithm we use the embedding
described in section 6.2.1. Specifically t independent MinHash func-
tions h1, . . . , ht are used to map each set x ∈ S to a list of t hash values
(h1(x), . . . , ht(x)). The MinHash function is implemented using Zobrist
hashing [117] from 32 bits to 64 bits with 8-bit characters. We sample a
MinHash function h by sampling a random Zobrist hash function g and
let h(x) = argminj∈x g(j). Zobrist hashing (also known as simple tab-
ulation hashing) has been shown theoretically to have strong MinHash
properties and is very fast in practice [100, 108]. We set t = 128 in our
experiments, see discussion later.

During preprocessing we also prepare sketches using the 1-bit min-
wise hashing scheme of Li and König [83]. Let ` denote the length in
64-bit words of a sketch x̂ of a set x ∈ S. We construct sketches for a
data set S by independently sampling 64× ` MinHash functions hi and
Zobrist hash functions gi that map from 32 bits to 1 bit. The ith bit of
the sketch x̂ is then given by gi(hi(x)). In the experiments we set ` = 8.

Similarity estimation using sketches. We use 1-bit minwise hash-
ing sketches for fast similarity estimation in the BruteForcePairs and
BruteForcePoint subroutines of the BruteForce step of the CPSJoin

algorithm. Given two sketches, x̂ and ŷ, we compute the number of bits
in which they differ by going through the sketches word for word, com-
puting the popcount of their XOR using the gcc builtin _mm_popcnt_u64



6.5. Implementation 109

that translates into a single instruction on modern hardware. Let Ĵ(x, y)
denote the estimated similarity of a pair of sets (x, y). If Ĵ(x, y) is below
a threshold λ̂ ≈ λ, we exclude the pair from further consideration. If
the estimated similarity is greater than λ̂ we compute the exact similar-
ity and report the pair if J(x, y) ≥ λ.

The speedup from using sketches comes at the cost of introducing
false negatives: A pair of sets (x, y) with J(x, y) ≥ λ may have an
estimated similarity less than λ̂, causing us to miss it. We let δ de-
note a parameter for controlling the false negative probability of our
sketches and set λ̂ such that for sets (x, y) with J(x, y) ≥ λ we have that
Pr[ Ĵ(x, y) < λ̂] < δ. In our experiments we set the sketch false negative
probability to be δ = 0.05.

Splitting step. The “splitting step” of the CPSJoin algorithm as de-
scribed in Algorithm 3 where the set S is split into buckets Sj is im-
plemented using the following heuristic: Instead of sampling a random
hash function and evaluating it on each element j ∈ x, we sample an
expected 1/λ elements from [t] and split S according to the correspond-
ing minhash values from the preprocessing step. This saves the linear
overhead in the size of our sets t, reducing the time spent placing each
set into buckets to O(1). Internally, a collection of sets S is represented
as a C++ std::vector<uint32_t> of set ids. The collection of buckets Sj
is implemented using Google’s dense_hash hash map implementation
from the sparse_hash package [61].

BruteForce step. Having reduced the overhead for each set x ∈ S to
O(1) in the splitting step, we wish to do the same for the BruteForce

step (described in Algorithm 4), at least in the case where we do not
call the BruteForcePairs or BruteForcePoint subroutines. The main
problem is that we spend time O(t) for each set when constructing the
count hash map and estimating the average similarity of x to sets in
S \ {x}. To get around this we construct a 1-bit minwise hashing sketch
ŝ of length 64× ` for the set S using sampling and our precomputed
1-bit minwise hashing sketches. The sketch ŝ is constructed as follows:
Randomly sample 64 × ` elements of S and set the ith bit of ŝ to be
the ith bit of the ith sample from S. This allows us to estimate the av-
erage similarity of a set x to sets in S in time O(`) using word-level
parallelism. A set x is removed from S if its estimated average simi-
larity is greater than (1 − ε)λ. To further speed up the running time
we only call the BruteForce subroutine once for each call to CPSJoin,
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calling BruteForcePoint on all points that pass the check rather than
recomputing ŝ each time a point is removed. Pairs of sets that pass the
sketching check are verified using the same verification procedure as
the AllPairs implementation by Mann et al. [86]. In our experiments
we set the parameter ε = 0.1. Duplicates are removed by sorting and
performing a single linear scan.

6.5.2 MinHash LSH

We implement a locality-sensitive hashing similarity join using MinHash
according to the pseudocode in Algorithm 5. A single run of the Min-
Hash algorithm can be divided into two steps: First we split the sets
into buckets according to the hash values of k concatenated MinHash
functions h(x) = (h1(x), . . . , hk(x)). Next we iterate over all non-empty
buckets and run BruteForcePairs to report all pairs of points with simi-
larity above the threshold λ. The BruteForcePairs subroutine is shared
between the MinHash and CPSJoin implementation. MinHash there-
fore uses 1-bit minwise sketches for similarity estimation in the same
way as in the implementation of the CPSJoin algorithm described above.

The parameter k can be set for each dataset and similarity threshold
λ to minimize the combined cost of lookups and similarity estimations
performed by algorithm. This approach was mentioned by Cohen et
al. [47] but we were unable to find an existing implementation. In prac-
tice we set k to the value that results in the minimum estimated running
time when running the first part (splitting step) of the algorithm for val-
ues of k in the range {2, 3, . . . , 10} and estimating the running time by
looking at the number of buckets and their sizes. Once k is fixed we
know that each repetition of the algorithm has probability at least λk of
reporting a pair (x, y) with J(x, y) ≥ λ. For a desired recall ϕ we can
therefore set L = dln(1/(1− ϕ))/λke. In our experiments we report the
actual number of repetitions required to obtain a desired recall rather
than using the setting of L required for worst-case guarantees.

6.5.3 AllPairs

To compare our approximate methods against a state-of-the-art exact
similarity join we use Bayardo et al.’s AllPairs algorithm [19] as re-
cently implemented in the set similarity join study by Mann et al. [86].
The study by Mann et al. compares implementations of several differ-
ent exact similarity join methods and finds that the simple AllPairs
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Algorithm 5: MinHash(S, λ)

Parameters: k ≥ 1, L ≥ 1.
1 for i← 1 to L do
2 Initialize hash map buckets[ ].
3 Sample k MinHash fcts. h← (h1, . . . , hk)
4 for x ∈ S do
5 buckets[h(x)]← buckets[h(x)] ∪ {x}
6 for S′ ∈ buckets do
7 BruteForcePairs(S′, λ)

algorithm is most often the fastest choice. Furthermore, for Jaccard sim-
ilarity, the AllPairs algorithm was at most 2.16 times slower than the
best out of six different competing algorithm across all the data sets and
similarity thresholds used, and for most runs AllPairs is at most 11%
slower than the best exact algorithm (see Table 7 in Mann et al. [86]).
Since our experiments run in the same framework and using the same
datasets and with the same thresholds as Mann et al.’s study, we con-
sider their AllPairs implementation to be a good representative of exact
similarity join methods for Jaccard similarity.

6.5.4 BayesLSH

For a comparison against previous experimental work on approximate
similarity joins we use an implementation of BayesLSH in C as pro-
vided by the BayesLSH authors [36, 35]. The BayesLSH package fea-
tures a choice between AllPairs and LSH as candidate generation
method. For the verification step there is a choice between BayesLSH
and BayesLSH-lite. Both verification methods use sketching to estimate
similarities between candidate pairs. The difference between BayesLSH
and BayesLSH-lite is that the former uses sketching to estimate the sim-
ilarity of pairs that pass the sketching check, whereas the latter uses
an exact similarity computation if a pair passes the sketching check.
Since the approximate methods in our CPSJoin and MinHash imple-
mentations correspond to the approach of BayesLSH-lite we restrict our
experiments to this choice of verification algorithm. In our experiments
we will use BayesLSH to represent the fastest of the two candidate gen-
eration methods, combined with BayesLSH-lite for the verification step.
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Dataset # sets / 106 avg. set size sets / tokens

AOL 7.35 3.8 18.9
BMS-POS 0.32 9.3 1797.9
DBLP 0.10 82.7 1204.4
ENRON 0.25 135.3 29.8
FLICKR 1.14 10.8 16.3
LIVEJ 0.30 37.5 15.0
KOSARAK 0.59 12.2 176.3
NETFLIX 0.48 209.8 5654.4
ORKUT 2.68 122.2 37.5
SPOTIFY 0.36 15.3 7.4
UNIFORM 0.10 10.0 4783.7
TOKENS10K 0.03 339.4 10000.0
TOKENS15K 0.04 337.5 15000.0
TOKENS20K 0.06 335.7 20000.0

Table 6.1: Dataset size, average set size, and average number of sets that
a token is contained in.

6.6 Experiments

We run experiments using the implementations of CPSJoin, MinHash,
BayesLSH, and AllPairs described in the previous section. In the ex-
periments we perform self-joins under Jaccard similarity for similarity
thresholds λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. We are primarily interested in mea-
suring the join time of the algorithms, but we also look at the number
of candidate pairs (x, y) considered by the algorithms during the join
as a measure of performance. Note that the preprocessing step of the
approximate methods only has to be performed once for each set and
similarity measure, and can be re-used for different similarity joins, we
therefore do not count it towards our reported join times. In practice the
preprocessing time is at most a few minutes for the largest data sets.

Data sets. The performance is measured across 10 real world data sets
along with 4 synthetic data sets described in Table 6.1. All datasets
except for the TOKENS datasets were provided by the authors of [86]
where descriptions and sources for each data set can also be found.
Note that we have excluded a synthetic ZIPF dataset used in the study
by Mann et al.[86] due to it having no results for our similarity thresh-
olds of interest. Experiments are run on versions of the datasets where
duplicate records are removed and any records containing only a single
token are ignored.

In addition to the datasets from the study of Mann et al. we add
three synthetic datasets TOKENS10K, TOKENS15K, and TOKENS20K,
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designed to showcase the robustness of the approximate methods. These
datasets have relatively few unique tokens, but each token appears in
many sets. Each of the TOKENS datasets were generated from a uni-
verse of 1000 tokens (d = 1000) and each token is contained in re-
spectively, 10, 000, 15, 000, and 20, 000 different sets as denoted by the
name. The sets in the TOKENS datasets were generated by sampling a
random subset of the set of possible tokens, rejecting tokens that had
already been used in more than the maximum number of sets (10, 000
for TOKENS10K). To sample sets with expected Jaccard similarity λ′

the size of our sampled sets should be set to (2λ′/(1 + λ′))d. For
λ′ ∈ {0.95, 0.85, 0.75, 0.65, 0.55} the TOKENS datasets each have 100 ran-
dom sets planted with expected Jaccard similarity λ′. This ensures an
increasing number of results for our experiments where we use thresh-
olds λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. The remaining sets have expected Jaccard
similarity 0.2. We believe that the TOKENS datasets give a good indi-
cation of the performance on real-world data that has the property that
most tokens appear in a large number of sets.

Recall. In our experiments we aim for a recall of at least 90% for the
approximate methods. In order to achieve this for the CPSJoin and
MinHash algorithms we perform a number of repetitions after the pre-
processing step, stopping when the desired recall has been achieved.
This is done by measuring the recall against the recall of AllPairs and
stopping when reaching 90%. In situations where the size of the true re-
sult set is not known it can be efficiently estimated using sampling if it is
not too small. Alternatively, the algorithms can be stopped once the rate
of new results drops below some threshold, indicating that most results
have been found. For BayesLSH using LSH as the candidate generation
method, the recall probability with the default parameter setting is 95%,
although we experience a recall closer to 90% in our experiments.

Hardware. All experiments were run on an Intel Xeon E5-2690v4 CPU
at 2.60GHz with 35MB L3,256kB L2 and 32kB L1 cache and 512GB of
RAM. Since a single experiment is always confined to a single CPU
core we ran several experiments in parallel [107] to better utilize our
hardware.
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Threshold 0.5 Threshold 0.6 Threshold 0.7 Threshold 0.8 Threshold 0.9

Dataset CP MH ALL CP MH ALL CP MH ALL CP MH ALL CP MH ALL

AOL 362.1 1329.9 483.5 113.4 444.2 117.8 42.2 152.9 13.7 34.6 100.6 4.2 21.0 43.8 1.6
BMS-POS 27.0 40.0 62.5 7.1 13.7 20.9 2.7 5.6 5.6 2.0 3.9 1.3 0.9 1.4 0.2
DBLP 9.2 22.1 127.9 2.5 10.1 63.8 1.1 3.7 27.4 0.6 1.8 7.8 0.3 0.7 0.8
ENRON 6.9 16.4 78.0 4.4 9.9 23.2 2.4 6.3 6.0 1.6 2.7 1.6 0.7 1.7 0.4
FLICKR 48.6 68.0 17.2 30.9 37.2 6.0 13.8 21.3 2.5 6.3 11.3 1.0 3.4 5.2 0.3
KOSARAK 377.9 311.1 73.1 62.7 89.2 14.4 7.2 16.1 1.6 3.9 9.9 0.5 1.2 2.6 0.1
LIVEJ 131.3 279.4 571.7 48.7 129.6 145.3 28.2 52.9 30.6 16.2 41.0 7.1 9.2 12.6 1.5
NETFLIX 25.3 121.8 1354.7 8.2 60.0 520.4 4.8 22.6 177.3 2.4 14.1 46.2 1.6 5.8 5.4
ORKUT 26.5 115.7 359.7 15.4 60.1 106.4 8.0 25.1 36.3 7.4 19.7 12.2 4.8 13.3 3.7
SPOTIFY 2.5 9.3 0.5 1.5 3.4 0.3 1.0 2.6 0.2 1.0 1.9 0.1 0.5 0.6 0.1
TOKENS10K 3.4 4.8 312.1 2.9 3.9 236.8 1.5 1.7 164.0 0.6 1.2 114.9 0.2 0.4 63.2
TOKENS15K 4.4 6.2 688.4 4.0 7.1 535.3 1.8 3.7 390.4 0.7 1.7 258.2 0.2 0.7 140.0
TOKENS20K 5.7 12.0 1264.1 4.0 11.4 927.0 2.1 4.5 698.4 0.8 2.2 494.3 0.3 0.8 273.4
UNIFORM005 3.9 6.6 54.1 1.6 3.0 27.6 0.9 1.4 10.5 0.5 1.0 3.6 0.1 0.3 0.4

Table 6.2: Join time in seconds for CPSJoin (CP), MinHash (MH) and AllPairs (ALL) with at least ≥ 90%
recall.

6.6.1 Results

Join time. Table 6.2 shows the average join time in seconds over five
independent runs, when approximate methods are required to have at
least 90% recall. We have omitted timings for BayesLSH since it was
always slower than all other methods, and in most cases it timed out
after 20 minutes when using LSH as candidate generation method. The
join time for MinHash is always greater than the corresponding join
time for CPSJoin except in a single setting: the dataset KOSARAK with
threshold λ = 0.5. Since CPSJoin is typically 2− 4× faster than Min-
Hash we can restrict our attention to comparing AllPairs and CPSJoin

where the picture becomes more interesting.
Figure 6.2 shows the join time speedup that CPSJoin achieves over

AllPairs. We achieve speedups of between 2 − 50× for most of the
datasets, with greater speedups at low similarity thresholds. For a
number of the datasets the CPSJoin algorithm is slower than AllPairs

for the thresholds considered here. Looking at Table 6.1 it seems that
CPSJoin generally performs well on most datasets where tokens are
contained in a large number of sets on average (NETFLIX, UNIFORM,
DBLP) and less well on datasets that have a lot of “rare” tokens (SPO-
TIFY, LIVEJOURNAL, AOL), although the picture is not completely con-
sistent as shown by the poor performance of CPSJoin on KOSARAK.
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Figure 6.2: Join time of CPSJoin

with at least 90% recall.

BayesLSH. The poor performance of
BayesLSH compared to the other algo-
rithms (BayesLSH was always slower) can
most likely be tracked down to differ-
ences in the implementation of the candi-
date generation methods of BayesLSH. The
BayesLSH implementation uses an older
implementation of AllPairs compared to
the implementation by Mann et al. [86]
which was shown to yield performance im-
provements by using a more efficient verifi-
cation procedure. The LSH candidate gen-
eration method used by BayesLSH corre-
sponds to the MinHash splitting step, but
with k (the number of hash functions) fixed
to one. Our technique for choosing k in
the MinHash algorithm, aimed at mini-
mizing the total join time, typically selects
k ∈ {3, 4, 5, 6} in the experiments. It is
therefore likely that BayesLSH can be com-
petitive with the other techniques by com-
bining it with other candidate generation procedures. Further experi-
ments to compare the performance of BayesLSH sketching to 1-bit min-
wise sketching for different parameter settings and similarity thresholds
would also be instructive.

TOKEN datasets. The TOKENS datasets clearly favor the approximate
join algorithms where CPSJoin is two to three orders of magnitude
faster than AllPairs. By increasing the number of times each token
appears in a set we can make the speedup of CPSJoin compared to All-
Pairs arbitrarily large as shown by the progression from TOKENS10 to
TOKENS20. The AllPairs algorithm generates candidates by searching
through the lists of sets that contain a particular token, starting with
rare tokens. Since every token appears in a large number of sets every
list will be long.

Interestingly, the speedup of CPSJoin is even greater for higher sim-
ilarity thresholds. We believe that this is due to an increase in the gap
between the similarity of sets to be reported and the remaining sets that
have an average Jaccard similarity of 0.2. This is in line with our the-
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oretical analysis of CPSJoin and most theoretical work on approximate
similarity search where the running time guarantees usually depend on
the approximation factor.

Candidates and verification. Table 6.4 compares the number of pre-
candidates, candidates, and results generated by the AllPairs and CP-
SJoin algorithms where the desired recall for CPSJoin is set to be greater
than 90%. For AllPairs the number of pre-candidates denotes all pairs
(x, y) investigated by the algorithm that pass checks on their size so that
it is possible that J(x, y) ≥ λ. The number of candidates is simply the
number of unique pre-candidates as duplicate pairs are removed explic-
itly by the AllPairs algorithm.

For CPSJoin we define the number of pre-candidates to be all pairs
(x, y) considered by the BruteForcePairs and BruteForcePoint sub-
routines of Algorithm 4. The number of candidates are pre-candidate
pairs that pass size checks (similar to AllPairs) and the 1-bit minwise
sketching check as described in Section 6.5.1. Note that for CPSJoin

the number of candidates may still contain duplicates as this is inherent
to the approximate method for candidate generation. Removing du-
plicates though the use of a hash table would drastically increase the
space usage of CPSJoin. For both AllPairs and CPSJoin the number
of candidates denotes the number of points that are passed to the exact
similarity verification step of the AllPairs implementation of Mann et
al. [86].

Table 6.4 shows that for AllPairs there is not a great difference be-
tween the number of pre-candidates and number of candidates, while
for CPSJoin the number of candidates is usually reduced by one or two
orders of magnitude for datasets where CPSJoin performs well. For
datasets where CPSJoin performs poorly such as AOL, FLICKR, and
KOSARAK there is less of a decrease when going from pre-candidates
to candidates. It would appear that this is due to many duplicate pairs
from the candidate generation step and not a failure of the sketching
technique.

6.6.2 Parameters

In order to investigate how the parameter settings affect the performance
of the CPSJoin algorithm we run experiments where we vary the brute
force parameter limit, the brute force aggressiveness parameter ε, and
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Figure 6.3: Relative join time for CPSJoin with at least 80% recall and
similarity threshold λ = 0.5 for different parameter settings of limit, ε,
and w.

the sketch length in words `. Table 6.3 gives an overview of the different
parameters and shows how they were set during the parameter exper-
iments and the final setting used for our join time experiments. Figure
6.3 shows the CPSJoin join time for different settings of the parameters,
relative to a certain parameter choice. We argue that the join times are
relatively stable around our setting of parameters, leading us to believe
that our technique of setting one parameter at a time is not too far away
from the optimal setting, although changing one parameter probably
changes the effect of other parameters to some extent.

Figure 6.3 (a) shows the effect of varying the brute force limit on the
join time. Lowering limit to 10 or 50 causes the join time to increase
due to a combination of spending more time splitting sets into buckets
and the lower probability of recall that comes when randomly splitting

Parameter Description Test Final

limit Brute force limit 100 250
` Sketch word length 4 8
t Size of MinHash set 128 128
ε Brute force aggressiveness 0.0 0.1
δ Sketch false negative prob. 0.1 0.05

Table 6.3: Parameters of the CPSJoin algorithm, their setting during
parameter experiments, and their setting for the final join time experi-
ments
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the data further during candidate generation. The join time is relatively
stable for limit ∈ {100, 250, 500}.

Figure 6.3 (b) shows the effect of varying the brute force aggressive-
ness on the join time. As we increase ε, sets that are close to the other
elements in their buckets are more likely to be removed by brute force
comparing them to all other points. The tradeoff here is between the loss
of probability of recall by letting a point continue in the Chosen Path

branching process versus the cost of brute forcing the point. The join
time is generally increasing as we increase ε due to the cost of perform-
ing more brute force comparisons. Nevertheless, it turns out that ε = 0.1
is a slightly better setting than ε = 0.0 for almost all data sets.

Figure 6.3 (c) shows the effect of varying the sketch length on the
join time. There is a tradeoff between the sketch similarity estimation
time and the precision of the estimate, leading to fewer false positives.
For a similarity threshold of λ = 0.5 using only a single word negatively
impacts the performance on most datasets compared to using two or
more words. The cost of using longer sketches seems neglible as it is
only a few extra instructions per similarity estimation so we opted to
use ` = 8 words in our sketches.

6.7 Conclusion

In this chapter we provide experimental and theoretical results on a
new randomized set similarity join algorithm, CPSJoin. We compare
CPSJoin experimentally to state-of-the-art exact and approximate set
similarity join algorithms. CPSJoin is typically 2− 4 times faster than
previous approximate methods. Compared to exact methods it obtains
speedups of more than an order of magnitude on real-world datasets,
while keeping the recall above 90%.

Among the datasets used in these experiments we note that NET-
FLIX and FLICKR represents two archetypes. On average a token in
the NETFLIX dataset appears in more than 5000 sets while on average
a token in the FLICKR dataset appears in less than 20 sets. Our experi-
ment indicate that CPSJoin brings large speedups to the NETFLIX type
datasets, while it is hard to improve upon the perfomance of AllPairs

on the FLICKR type.
A direction for future work could be to tighten and simplify the theo-

retical analysis to better explain the experimental results. We conjecture
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Dataset Threshold 0.5 Threshold 0.7
ALL CP ALL CP

8.5E+09 7.4E+09 6.2E+08 2.9E+09
AOL 8.5E+09 1.4E+09 6.2E+08 3.1E+07

1.3E+08 1.2E+08 1.6E+06 1.5E+06
2.0E+09 9.2E+08 2.7E+08 3.3E+08

BMS-POS 1.8E+09 1.7E+08 2.6E+08 4.9E+06
1.1E+07 1.0E+07 2.0E+05 1.8E+05
6.6E+09 4.6E+08 1.2E+09 1.3E+08

DBLP 1.9E+09 4.6E+07 7.2E+08 4.3E+05
1.7E+06 1.6E+06 9.1E+03 8.5E+03
2.8E+09 3.7E+08 2.0E+08 1.5E+08

ENRON 1.8E+09 6.7E+07 1.3E+08 2.1E+07
3.1E+06 2.9E+06 1.2E+06 1.2E+06
5.7E+08 2.1E+09 9.3E+07 9.0E+08

FLICKR 4.1E+08 1.1E+09 6.3E+07 3.8E+08
6.6E+07 6.1E+07 2.5E+07 2.3E+07
2.6E+09 4.7E+09 7.4E+07 4.2E+08

KOSARAK 2.5E+09 2.1E+09 6.8E+07 2.1E+07
2.3E+08 2.1E+08 4.4E+05 4.1E+05
9.0E+09 2.8E+09 5.8E+08 1.2E+09

LIVEJ 8.3E+09 3.6E+08 5.6E+08 1.8E+07
2.4E+07 2.2E+07 8.1E+05 7.6E+05
8.6E+10 1.3E+09 1.0E+10 4.3E+08

NETFLIX 1.3E+10 3.1E+07 3.4E+09 6.4E+05
1.0E+06 9.5E+05 2.4E+04 2.2E+04
5.1E+09 1.1E+09 3.0E+08 7.2E+08

ORKUT 3.9E+09 1.3E+06 2.6E+08 8.1E+04
9.0E+04 8.4E+04 5.6E+03 5.3E+03
5.0E+06 1.2E+08 4.7E+05 8.5E+07

SPOTIFY 4.8E+06 3.1E+05 4.6E+05 2.7E+03
2.0E+04 1.8E+04 2.0E+02 1.9E+02
1.5E+10 1.7E+08 8.1E+09 4.9E+07

TOKENS10K 4.1E+08 5.7E+06 4.1E+08 1.9E+06
1.3E+05 1.3E+05 7.4E+04 6.9E+04
3.6E+10 3.0E+08 1.9E+10 8.1E+07

TOKENS15K 9.6E+08 7.2E+06 9.6E+08 1.9E+06
1.4E+05 1.3E+05 7.5E+04 6.9E+04
6.4E+10 4.4E+08 3.4E+10 1.0E+08

TOKENS20K 1.7E+09 8.8E+06 1.7E+09 1.9E+06
1.4E+05 1.4E+05 7.9E+04 7.4E+04
2.5E+09 3.7E+08 6.5E+08 1.3E+08

UNIFORM005 2.0E+09 9.5E+06 6.1E+08 3.9E+04
2.6E+05 2.4E+05 1.4E+03 1.3E+03

Table 6.4: Number of pre-candidates, candidates and results for ALL
and CP with at least 90% recall.
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that the running time of the algorithm can be bounded by a simpler
function of the sum of similarities between pairs of points in S.

We note that recursive methods such as ours lend themselves well to
parallel and distributed implementations since most of the computation
happens in independent, recursive calls. Further investigating this is an
interesting possibility.

Acknowledgement. The authors would like to thank Willi Mann
for making the source code and data sets of the study [86] available,
and Aniket Chakrabarti for information about the implementation of
BayesLSH.



Chapter 7

Summary and open problems

In this chapter we revisit our results, but with a focus on future research
directions and open problems. We refer to Section 1.2 for a general
overview of the results.

In Chapter 2 we presented a data structure for the approximate furthest
neighbor problem (Definition 1.2). Our main contribution is the devel-
opment of a new query procedure for the problem that eliminates the
need for multiple r-far searches. We showed that for iteration-based
data structures is not possible to store less than min{n, 2Ω(d)}− 1 points
for c-AFN when c <

√
2. However when c =

√
2 we need just d + 1

points [60] (See also Appendix A.2). It would be interesting to under-
stand better why

√
2 is a special threshold, and to extend the lower

bound beyond iteration-based data structures. We show that the query-
independent variation of our algorithm stores O( f (c)d) points for some
function f (Section 2.2.2) However our algorithm only works with high
probability, and we do not have a closed form for f . An interesting open
problem is to close this gap to the lower bound.

Open problem 7.1. Design a
√

2(1− ε)-AFN data structure for ε ∈ (0, 1)
using space O(d min{n, 2O(dε2)}) with query time n1−Ω(1).

In Chapter 3 we used the c-AFN result in combination with LSH tech-
niques to solve to approximate annulus query problem (Definition 1.3).
Our contribution here is the analysis of this combined data structure,
achieving sub-linear query time. An interesting direction of future re-
search is in further combination of our data structure with LSH based
data structures. For example to improve the output sensitivity of near
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neighbor search based on LSH. By replacing each hash bucket with an
AFN data structure with suitable approximation factors, it is possible to
control the number of times each point in S is reported. Recent work
on distance-sensitive hashing suggest a larger framework extending to
“anti-lsh” functions [17]. It would be interesting future work to place
our results in that context.

The distance sensitive membership query investigated in Chapter 4 has
not been the subject of much prior research. In particular we have been
unable to find any previous results without false negatives, so there are
many unanswered questions. Our contributions are upper and lower
bounds on the space usage for this problem in ({0, 1}d, H). Most press-
ing we do not show much in regards to query time. Our method would
use time O(n) to make a comparison to each of the stored signatures.
This could possibly be improved by using additional similarity search
methods that avoid false negatives (e.g. [94]), but that would come with
increased false positives. In comparison a regular Bloom filter uses O(k)
time independently of how many items are in the set. However, a solu-
tion with constant time (or even polylog in n) could be used, say with
ε = 1/n, to solve the c-approximate nearest neighbor problem. The best
currently known data structures for this problem use nΩ(1/c) time [14].

Open problem 7.2. Design a distance sensitive approximate member-
ship filter for ({0, 1}d, H) with query time O(n1/c) and space O(n1+1/c).

The signature vector method we introduced does not really extend
well to other spaces. This is another obvious area for future work.

Open problem 7.3. Show non-trivial bounds for the (r, c, w)-DAMQ
problem in (Rd, `2).

Note that embeddings a la Johnson and Lindenstrauss can not be
used here as they would introduce false negatives.

In Chapter 5 we look at nearest neighbor preserving embeddings. The
benefit of using this setting as opposed to normal distance preserv-
ing embeddings is that it is possible to embed into lower dimensional
spaces. Our contribution is showing that this benefit can be achieved
while using sparse matrices and giving an analysis of the FJLT transform
in this setting. In the presented embedding, the embedding dimension-
ality is independent of n, but relies instead on λX. Could the sparsity
parameter f be a similarly disconnected from the size of the embedded
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set? In the spanning tree construction used in the proof of Theorem 5.2
this seems to be achievable if we can show results using only distances
between the covering balls, and not the actual points inside them. This
would require a new way of bounding the probability that no point
“leaves” a ball, independently of how many points are inside it. Cur-
rently we get f = O(d−1 log2 n), but there are known `2 embeddings
with O(ε) sparsity [75]. Achieving similar results for nearest neighbor
preserving embeddings would allow for much faster embeddings.

Open problem 7.4. Construct a nearest neighbor preserving embedding
with k = O(ε−2 log λs log (2/ε)) and sparsity O(ε).

Finally, in Chapter 6 we looked at the set similarity join problem (Defi-
nition 1.6). We presented the CPSJoin algorithm, based on the Chosen
Path Tree. Unlike previous LSH based methods we eliminate the setting
of k as a parameter by presenting an automatically adapting algorithm.
Our main theoretical contribution here is in analyzing the query time
as well as giving probabilistic bounds for space and recall. Empirically
our methods are very fast on all data sets, but they can still be beaten
by exact methods on data sets well suited for prefix filtering. It would
be interesting future work to develop approximate set similarity meth-
ods that achieve high recall significantly faster than exact methods for
all data sets. Another direction would be to attempt to improve our re-
call guarantees, either through altering the algorithm or tightening the
analysis.
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Appendix

A.1 Properties of Gaussians

Lemma A.1. Let X ∼ N (0, x) and Y ∼ N (0, y). Then ∀t > 0:

y ≥ x ⇒ Pr[X2 ≤ t] ≥ Pr[Y2 ≤ t] (A.1)

y ≤ x ⇒ Pr[X2 ≤ t] ≤ Pr[y2 ≤ t] (A.2)

With equality exactly when x = y.

Proof. Let y ≥ x:

Pr[X2 ≤ t] = Pr[X ≤
√

t]− Pr[X ≤ −
√

t] ≥ (A.3)

Pr[Y ≤
√

t]− Pr[X ≤ −
√

t] ≥ (A.4)

Pr[Y ≤
√

t]− Pr[Y ≤ −
√

t] = Pr[Y2 ≤ t] (A.5)

Similarly in the other direction when y ≤ x.

We can generalize to sums of such variables:

Lemma A.2. For any integer k ≥ 1. Let X = ∑k
i=1 X2

i where Xi ∼ N (0, xi)

and Y = ∑k
i=1 Y2

i where Yi ∼ N (0, yi). Then if yi ≥ xi for all i ∈ {1, · · · , k}
we have:

Pr[Y ≤ t] ≤ Pr[X ≤ t].

Proof. We show a standard proof by induction. Define a new variable
Sl = ∑k−l

i=1 X2
i + ∑k

j=k−l+1 Y2
j . As a base case set l = 1:

Pr[S1 ≤ t] = Pr[Y2
k +

k−1

∑
i=1

X2
i ≤ t] ≤ Pr[S0 ≤ t].
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By fixing X2
i for 1 ≤ i ≤ k− 1 and using lemma. A.1. And generally for

all integers l > 0 up to l = k:

Pr[Sl ≤ t] = Pr[Sl−1 ≤ t]

By fixing everything but the l’th variable and using lemma. A.1. We
arrive at Pr[Y ≤ t] = Pr[Sk ≤ t] ≤ Pr[S0 ≤ t] = Pr[X ≤ t].

A.2
√

2-AFN in d + 1 points

o
q

x

x’

Figure A.1: Illustration of the construction in the plane.

Theorem A.1. For c ≥
√

2 there exists a data structure that computes the
c-AFN of any set S ⊆ Rd by storing a size d + 1 subset of S.

Proof. A proof outline is given in [60], we fill in a few details.
Given a set S let B(o, r) be the minimum enclosing ball of S. Assume

without loss of generality that r = 1. Let P = {x ∈ B(o, r)|‖o− x‖2 = r}.
Pick a set R of d + 1 points from P in a way that the convex hull of
R contains o. One (expensive) way of doing this is to iterate through
the points in P and remove all points that do not shrink the minimum
enclosing ball of the remaining points on removal. The data structure
stores R.

Given any query point q, let t = ‖o − q‖2. Let x ∈ S be the actual
furthest neighbor. We see that ‖x− q‖2 ≤ 1+ t. If o = q, any point in R is
an exact furthest neighbor. Otherwise, consider the hyperplane passing
through o and perpendicular to the line defined by q and o. Since o is
inside the convex hull of R, R must contain at least one point, x′, on the



side of the hyperplane not containing q. Consider the triangle defined
by x′, o and q. (See Figure A.1). It is clear that ‖x′ − q‖2 ≥

√
t2 + 1.

Hence ‖x
′−q‖2
‖x−q‖2

≥
√

t2+1
1+t . This is minimized at 1/

√
2 when t = 1, so

‖x′ − q‖2 ≥ ‖x−q‖2√
2

.
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